Cho nửa đường tròn đường kính AB. Kẻ hai tia tiếp tuyến Ax và By với nửa đường tròn. C là
một điểm nằm trên nửa đường tròn. Tiếp tuyến với nửa đường tròn tại C cắt Ax, By tại M, N.
AN cắt BM tại I. Nối CI kéo dài cắt AB tại E. Chứng minh rằng:
1. MN = AM + BN
2. CI vuông góc với AB
3. I là trung điểm CE.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có :
\(2x-2+2\sqrt{2x-1}=14\)
\(\Leftrightarrow2x-1+2\sqrt{2x-1}+1=16\)
\(\Leftrightarrow\left(\sqrt{2x-1}+1\right)^2=16\Leftrightarrow\sqrt{2x-1}+1=4\)
\(\Leftrightarrow\sqrt{2x-1}=3\Leftrightarrow2x-1=9\Leftrightarrow x=5\)
ta có :
\(A=\left(\frac{2\sqrt{x}-1}{x\sqrt{x}+1}+\frac{1}{\sqrt{x}+1}\right).\)\(\left(\frac{x+1}{\sqrt{x}-1}-\frac{1}{\sqrt{x}}\right)\)
\(A=\left(\frac{2\sqrt{x}-1+x-\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}\right).\left(\frac{x\sqrt{x}+\sqrt{x}-\sqrt{x}-1}{\sqrt{x}\left(\sqrt{x}-1\right)}\right)\)
\(A=\left(\frac{x+\sqrt{x}}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}\right).\left(\frac{x\sqrt{x}-1}{\sqrt{x}\left(\sqrt{x}-1\right)}\right)\)
\(A=\left(\frac{\sqrt{x}}{\left(x-\sqrt{x}+1\right)}\right).\left(\frac{x+\sqrt{x}+1}{\sqrt{x}}\right)=\frac{x+\sqrt{x}+1}{x-\sqrt{x}+1}\)
a. ta có : \(NP^2=MN^2+MP^2\Rightarrow\Delta MNP\) vuông tại M
b. ta có : \(MH=\frac{MN.MP}{NP}=\frac{12.5}{13}=\frac{60}{13}cm\)
\(PH=\frac{MP^2}{PN}=\frac{12^2}{13}=\frac{144}{13}cm\)
c. \(sin\widehat{N}=\frac{MP}{PN}=\frac{12}{13}\Rightarrow\widehat{N}\simeq67^0\)\(\Rightarrow\text{\widehat{P}=}90^0-\widehat{N}=23^0\)
\(\widehat{P}=90^0-\widehat{N}=23^0\)
Ta có:
\(y=3x\left(k^2-k+1\right)=-2\)
\(\Rightarrow3\left(-3\right)\left(k^2-k+1\right)=-2\)
\(\Rightarrow-9\left(k^2-k+1\right)=-2\)
\(\Rightarrow k^2-k+1=\frac{2}{9}\)
\(\Rightarrow\left(k-\frac{1}{2}\right)^2=\frac{2}{9}-\frac{3}{4}=\frac{35}{36}\) (Vô nghiệm)
a, Xét tam giác MHN vuông tại H, đường cao HK
ta có : \(HM^2=KM.MN\)( hệ thức lượng ) (1)
Xét tam giác MHQ vuông tại H, đường cao HI
ta có : \(HM^2=MI.MQ\)( hệ thức lượng ) (2)
Từ (1) ; (2) suy ra : \(KM.KN=MI.MQ\)