K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Qua O kẻ đường thẳng vuông góc AB và CD, lần lượt cắt AB và CD tại E và F ⇒ E là trung điểm AB, F là trung điểm CD

AE=12AB=4(cm) ; CF=12CD=3(cm)

Áp dụng định lý pytago cho tam giác vuông OAE

OE=√OA2−AE2=√R2−AE2=3(cm)

Pitago tam giác vuông OCF:

OF=√OC2−CF2=√R2−CF2=4(cm)

⇒EF=OE+OF=7(cm)

chúc bn học tốt !

14 tháng 5 2023

a) Ta có AH là đường cao của tam giác ABC, do đó AB là đường trung trực của đoạn thẳng LH (vì H là trung điểm của BC).

b) Ta có $\angle AED = \angle ACD$ do cùng chắn cung AD trên đường tròn (T). Mà $\angle A = \angle APQ$ vì DE // PQ, nên $\angle AED = \angle APQ$. Tương tự, ta cũng có $\angle ADE = \angle AQP$. Do đó tam giác ADE và APQ đều có hai góc bằng nhau, tức là cân.

c) Ta có $\angle LBD = \angle LCB$ do cùng chắn cung LB trên đường tròn (T). Mà $\angle LCB = \angle LPB$ vì DE // PQ, nên $\angle LBD = \angle LPB$. Tương tự, ta cũng có $\angle LDC = \angle LQC$. Do đó tam giác LBD và LPQ đều có hai góc bằng nhau, tức là đồng dạng. Vậy ta có $\frac{LD}{LP} = \frac{LB}{LQ}$.

Từ đó, có $\frac{LP}{LQ} = \frac{LB}{LD}$. Áp dụng định lý cosin trong tam giác BPQ, ta có:

$PQ^2 = BP^2 + BQ^2 - 2BP \cdot BQ \cdot \cos{\angle PBQ}$

Nhưng ta cũng có:

$BP = LB \cdot \frac{LD}{LP}$

$BQ = L \cdot \frac{LP}{LD}$

Thay vào định lý cosin, ta được:

$PQ^2 = LB^2 + LQ^2 - 2LB \cdot LQ \cdot \frac{LD}{LP} \cdot \frac{LP}{LD} \cdot \cos{\angle PBQ}$

$PQ^2 = LB^2 + LQ^2 - 2LB \cdot LQ \cdot \cos{\angle PBQ}$

Tương tự, áp dụng định lý cosin trong tam giác ADE, ta có:

$DE^2 = AD^2 + AE^2 - 2AD \cdot AE \cdot \cos{\angle AED}$

Nhưng ta cũng có:

$AD = LD \cdot \frac{LB}{LP}$

$AE = LQ \cdot \frac{LD}{LP}$

Thay vào định lý cosin, ta được:

$DE^2 = LD^2 + LQ^2 - 2LD \cdot LQ \cdot \frac{LB}{LP} \cdot \frac{LD}{LP} \cdot \cos{\angle AED}$

$DE^2 = LD^2 + LQ^2 - 2LD \cdot LQ \cdot \cos{\angle AED}$

Nhưng ta cũng có $\angle AED = \angle PBQ$ do tam giác cân ADE và APQ, nên $\cos{\angle AED} = \cos{\angle PBQ}$. Do đó,

$DE^2 + PQ^2 = 2(LB^2 + LQ^2) - 4LB \cdot LQ \cdot \cos{\angle PBQ}$

Nhưng ta cũng có $LB \cdot LQ = LH \cdot LL'$ (với L' là điểm đối xứng của L qua AB), do tam giác HL'B cân tại L'. Thay vào phương trình trên, ta được:

$DE^2 + PQ^2 = 2(LB^2 + LQ^2) - 4LH \cdot LL' \cdot \cos{\angle PBQ}$

24 tháng 9 2021

giúp j

24 tháng 9 2021

NÓ BỊ LỖI BẤM LỘN

26 tháng 9 2021

Đặt \(A=\frac{a}{\sqrt{a^2+2bc}}+\frac{b}{\sqrt{b^2+2ca}}+\frac{c}{\sqrt{c^2+2ab}}\left(a,b,c>0\right)\)

Ta có:

\(A=\sqrt{1-\frac{2bc}{a^2+2bc}}+\sqrt{1-\frac{2ca}{b^2+2ca}}+\sqrt{1-\frac{2ab}{c^2+2ab}}\)

\(\le\sqrt{1-\frac{2bc}{a^2+b^2+c^2}}+\sqrt{1-\frac{2ca}{a^2+b^2+c^2}}\)\(+\sqrt{1-\frac{2ab}{a^2+b^2+c^2}}\).

\(=\frac{\sqrt{a^2+\left(b-c\right)^2}+\sqrt{b^2+\left(c-a\right)^2}+\sqrt{c^2+\left(a-b\right)^2}}{\sqrt{a^2+b^2+c^2}}\)\(\le\frac{\sqrt{a^2}+\sqrt{b^2}+\sqrt{c^2}}{\sqrt{a^2+b^2+c^2}}=\frac{a+b+c}{\sqrt{a^2+b^2+c^2}}\)\(\le\frac{a+b+c}{\sqrt{ab+bc+ca}}\).

Dấu \("="\)xảy ra \(\Leftrightarrow a=b=c>0\).

Vậy với \(a,b,c>0\)thì :

\(\frac{a}{\sqrt{a^2+2bc}}+\frac{b}{\sqrt{b^2+2ca}}+\frac{c}{\sqrt{c^2+2ab}}\le\frac{a+b+c}{\sqrt{ab+bc+ca}}\).

23 tháng 9 2021

đi ngủ đê ae 

23 tháng 9 2021

= Không biết nha bạn

23 tháng 9 2021

HPT CÓ 2 NGHIỆMundefined