K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Điểm D ở đâu vậy bạn?

a: Xét (O) có

ΔBDC nội tiếp

BC là đường kính

Do đó: ΔBDC vuông tại D

=>CD\(\perp\)AB tại D

Xét (O) có

ΔBEC nội tiếp

BC là đường kính

Do đó: ΔBEC vuông tại E

=>BE\(\perp\)AC tại E

Xét ΔABC có

BE,CD là các đường cao

BE cắt CD tại H

Do đó: H là trực tâm của ΔABC

=>AH\(\perp\)BC tại F

Xét tứ giác HECF có \(\widehat{HEC}+\widehat{HFC}=90^0+90^0=180^0\)

nên HECF là tứ giác nội tiếp

=>\(\widehat{HEF}=\widehat{HCF}\)

b: Xét tứ giác ADHE có \(\widehat{ADH}+\widehat{AEH}=90^0+90^0=180^0\)

nên ADHE là tứ giác nội tiếp

=>\(\widehat{DEH}=\widehat{DAH}\)

mà \(\widehat{HEF}=\widehat{HCF}\)

và \(\widehat{DAH}=\widehat{HCF}\left(=90^0-\widehat{ABC}\right)\)

nên \(\widehat{DEB}=\widehat{FEB}\)

=>EB là phân giác của góc DEF

ĐKXĐ: \(\left\{{}\begin{matrix}x\ne0\\y\ne0\end{matrix}\right.\)

\(\left\{{}\begin{matrix}\dfrac{2}{3x}+\dfrac{4}{5y}=7\\\dfrac{3}{4x}-\dfrac{2}{5y}=3\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\dfrac{2}{3x}+\dfrac{4}{5y}=7\\\dfrac{6}{4x}-\dfrac{4}{5y}=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{2}{3x}+\dfrac{6}{4x}=7+6\\\dfrac{2}{3x}+\dfrac{4}{5y}=7\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\dfrac{2}{3x}+\dfrac{3}{2x}=13\\\dfrac{2}{3x}+\dfrac{4}{5y}=7\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\dfrac{1}{x}\left(\dfrac{2}{3}+\dfrac{3}{2}\right)=13\\\dfrac{2}{3x}+\dfrac{4}{5y}=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x}\cdot\dfrac{13}{6}=13\\\dfrac{2}{3x}+\dfrac{4}{5y}=7\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\dfrac{1}{x}=13:\dfrac{13}{6}=6\\\dfrac{2}{3x}+\dfrac{4}{5y}=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{6}\\\dfrac{4}{5y}=7-\dfrac{2}{3x}=7-\dfrac{2}{3\cdot\dfrac{1}{6}}\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=\dfrac{1}{6}\\\dfrac{4}{5y}=7-\dfrac{2}{\dfrac{1}{2}}=7-2\cdot2=3\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=\dfrac{1}{6}\\5y=\dfrac{4}{3}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{6}\\y=\dfrac{4}{15}\end{matrix}\right.\left(nhận\right)\)

28 tháng 5 2024

M = x + 2 - √(x² - 2x + 1)

= x + 2 - √(x - 1)²

= x + 2 - |x - 1| (1)

Với x ≥ 1, ta có:

(1) = x + 2 - x + 1

= 3

Với x < 1, ta có:

M = x + 2 - 1 + x 

= 2x + 1

AH
Akai Haruma
Giáo viên
28 tháng 5 2024

Bạn nên viết lại đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để mọi người đọc hiểu đề của bạn hơn nhé.

a: Để hàm số y=(m-2)x+m+3 đồng biến thì m-2>0

=>m>2

b: Để đồ thị hàm số y=(m-2)x+m+3 song song với đường thẳng y=2x+7 thì 

\(\left\{{}\begin{matrix}m-2=2\\m+3\ne7\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m=4\\m\ne4\end{matrix}\right.\)

=>\(m\in\varnothing\)

27 tháng 5 2024

Hàm số y = (m + 2)x + 3 là hàm số bậc nhất khi m + 2 ≠ 0, hay m ≠ – 2.

Vậy ta có điều kiện m ≠ – 2.

a) Đồ thị hàm số đã cho song song với đường thẳng y = –x khi m + 2 = –1, tức là m = –3.

Giá trị này thỏa mãn điều kiện m ≠ – 2.

Vậy giá trị m cần tìm là m = –3.

b) Với m = –3 ta có hàm số y = –x + 3.

Đồ thị hàm số y = –x + 3 là đường thẳng đi qua hai điểm (0; 3) và (3; 0).

Gọi thời gian làm riêng hoàn thành khu vườn của lớp 9B là x(giờ)

(Điều kiện: x>0)

Thời gian làm riêng hoàn thành khu vườn của lớp 9A là:

x+7(giờ)

Trong 1 giờ, lớp 9A làm được: \(\dfrac{1}{x+7}\)(khu vườn)

Trong 1 giờ, lớp 9B làm được: \(\dfrac{1}{x}\)(khu vườn)

Trong 1 giờ, hai lớp làm được: \(\dfrac{1}{12}\)(khu vườn)

Do đó, ta có:

\(\dfrac{1}{x}+\dfrac{1}{x+7}=\dfrac{1}{12}\)

=>\(\dfrac{2x+7}{x^2+7x}=\dfrac{1}{12}\)

=>\(x^2+7x=12\left(2x+7\right)\)

=>\(x^2-17x-84=0\)

=>(x-21)(x+4)=0

=>\(\left[{}\begin{matrix}x=21\left(nhận\right)\\x=-4\left(loại\right)\end{matrix}\right.\)

Vậy: thời gian làm riêng hoàn thành khu vườn của lớp 9B là 21(giờ)

thời gian làm riêng hoàn thành khu vườn của lớp 9A là 21+7=28(giờ)

31 tháng 5 2024

Lời giải:

Cho tam giác ABC có ba đường phân giác AD, BE, CF đồng quy tại I

Vì BI là phân giác của góc ABC nên ˆABI=ˆIBC=ˆABC2���^=���^=���^2.

Vì CI là phân giác của góc ACB nên ˆACI=ˆBCI=ˆACB2���^=���^=���^2.

Vì AI là phân giác của góc ACB nên ˆBAI=ˆCAI=ˆCAB2���^=���^=���^2.

Ta có: ˆDIC+ˆAIC=180°���^+���^=180° (hai góc kề bù).

Do đó ˆDIC=180°ˆAIC���^=180°−���^ (1)

Trong ∆AIC có ˆIAC+ˆICA+ˆAIC=180°���^+���^+���^=180° (tổng ba góc trong một tam giác).

Suy ra ˆIAC+ˆICA=180°ˆAIC���^+���^=180°−���^ (2)

Từ (1) và (2) ta có:

Nên ˆDIC=ˆIAC+ˆICA=ˆBAC+ˆBCA2���^=���^+���^=���^+���^2.

Trong ∆CAB ta có: ˆBAC+ˆABC+ˆACB=180°���^+���^+���^=180° (tổng ba góc trong một tam giác)

Nên ˆBAC+ˆACB=180°ˆABC���^+���^=180°−���^

Suy ra

ˆDIC=ˆBAC+ˆBCA2=180°ˆABC2=90°ˆABC2���^=���^+���^2=180°−���^2=90°−���^2 (3)

Vì tam giác BIH vuông tại H nên ˆHIB+ˆHBI=90°���^+���^=90°.

Suy ra ˆHIB=90°ˆHBI=90°ˆABC2���^=90°−���^=90°−���^2 (4)

Từ (3) và (4) suy ra ˆBIH=ˆCID���^=���^.

Vậy ˆBIH=ˆCID���^=���^.