cho 3 số thực x, y, z thỏa mãn \(x+y+z=xyz\) và \(x>1;y>1;z>1\)
tìm GTNN của \(P=\frac{x-1}{y^2}+\frac{y-1}{z^2}+\frac{z-1}{x^2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo tính chất hai tiếp tuyến cắt nhau ta có:
DM = DB, EM = EC, AB = AC
Chu vi ΔADE:
CΔADE = AD + DE + AE = AD + DM + ME + AE = AD + DB + EC + AE = AB + AC = 2AB (đpcm)
\(\sqrt{x+2\sqrt{x+1}}\)
\(\sqrt{\left(x-1\right)-2\sqrt{x-1}+1}\)
\(\sqrt{\left(\sqrt{x-1}+1\right)^2}\)
\(\left|\sqrt{x-1}+1\right|\)
ta có :
\(P=ab\le\left(\frac{a+b}{2}\right)^2=\frac{121}{4}\)
vậy GTLN của P là \(121\text{ khi }\hept{\begin{cases}a+b=11\\a=b\end{cases}\Leftrightarrow a=b=\frac{11}{2}}\)