K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 8 2016

Ta có mp P và Q cùng đi qua A, hai mp có giao điểm thì cắt nhau.

Với d và d' thuộc Q cùng với việc d song song mp P(mp chứa d') suy ra d song song d'.

Nếu d song song mp P mà d và d' ko cùng thuộc một mp thì đây là hai đừờng thẳng chéo nhau

5 tháng 8 2016

\(\left(x^3+8y^3\right)\div\left(x+2y\right)\)

\(=\left[x^3+\left(2y\right)^3\right]\div\left(x+2y\right)\)

\(=\left(x+2y\right)\left(x^2-2xy+4y^2\right)\div\left(x+2y\right)\)

\(=x^2-2xy+4y^2\)

5 tháng 8 2016

\(\frac{x^3+8y^3}{x+2y}\)

\(=\frac{x^3+\left(2y\right)^3}{x+2y}\)

\(=\frac{\left(x+2y\right)\left(x^2+4y^2-2xy\right)}{x+2y}\)

\(=x^2+4y^2-2xy\)

4 tháng 8 2016

Ta có:

\(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}\) 

                                              \(>\frac{a+b+c}{a+b+c}=1\left(1\right)\)

Áp dụng a/b < 1 => a/b < a+m/b+m (a,b,m thuộc N*)

=> \(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< \frac{a+c}{a+b+c}+\frac{b+a}{a+b+c}+\frac{c+b}{a+b+c}\)

                                                    \(< \frac{2.\left(a+b+c\right)}{a+b+c}=2\left(2\right)\)

Từ (1) và (2) => đpcm

4 tháng 8 2016

\(\frac{a}{a+b}>\frac{a}{a+b+c}\)

\(\frac{b}{b+c}>\frac{b}{a+b+c}\)

\(\frac{c}{a+c}>\frac{c}{a+b+c}\)

\(\Rightarrow\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{a+c}>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}\)

\(\Rightarrow\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{a+c}>\frac{a+b+c}{a+b+c}\)

\(\Rightarrow\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{a+c}>1\)

Ta luôn có phân số \(\frac{m}{n}< \frac{m+z}{n+z}\)với  \(m>n>0;z>0\)

\(\Rightarrow\frac{a}{a+b}< \frac{a+c}{a+b+c}\)

\(\frac{b}{b+c}< \frac{b+a}{a+b+c}\)

\(\frac{c}{c+a}< \frac{c+b}{a+b+c}\)

\(\Rightarrow\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< \frac{a+c}{a+b+c}+\frac{a+b}{a+b+c}+\frac{c+b}{a+b+c}\)

\(\Rightarrow\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< \frac{a+c+b+c+a+b}{a+b+c}\)

\(\Rightarrow\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< 2\)

Vậy \(1< \frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< 2\)

4 tháng 8 2016

đố các thánh làm toán giải đc tìm đc a;b;c tôi lạy lm thánh

4 tháng 8 2016

\(=8x^6+36x^4y+54x^2y^2+27y^3\)

suy ra hệ số là 54

5 tháng 11 2017

Ta thấy A gồm có 99 số hạng nên ta nhóm mỗi nhóm 3 số hạng.

Ta có: A = 1 + 5 + 52 + 53 + 54 + 55 +...+ 597 + 598 + 599

             = (1 + 5 + 52 )+ (53 + 54 + 55 )+...+( 597 + 598 + 599 )

             =(1 + 5 + 52 )+ 53(1 + 5 + 52 ) +...+ 597(1 + 5 + 52 )

             = ( 1 + 5 + 52)(1 + 53+....+597)

             = 31(1 + 53+....+597)

Vì có một thừa số là 31 nên A chia hết cho 31.

 P/s Đừng để ý câu trả lời của mình

3 tháng 8 2016

tức là tìm a,b,x hả hay sao ta @

3 tháng 8 2016

\(\Leftrightarrow\frac{1}{a+b-x}-\frac{1}{x}=\frac{1}{a}+\frac{1}{b}\Leftrightarrow\frac{x-\left(a+b\right)+x}{\left(a+b-x\right)x}=\frac{a+b}{ab}\)
\(\Leftrightarrow\frac{2x-\left(a+b\right)}{\left(a+b-x\right)x}=\frac{a+b}{ab}\Rightarrow\left(2x-\left(a+b\right)\right)ab=\left(a+b\right)\left(a+b-x\right)x\)
\(\Rightarrow2xab-\left(a+b\right)ab=x\left(a+b\right)^2-x^2\left(a+b\right)\)
\(\Leftrightarrow x^2\left(a+b\right)-x\left(\left(a+b\right)^2-2ab\right)-\left(a+b\right)ab=0\)
\(\Leftrightarrow x^2\left(a+b\right)-x\left(a^2+b^2\right)-\left(a+b\right)ab=0\)
 

2 tháng 8 2016

góc C = 

C = 180 - ( 100 + 20 ) 

C = 180 - 120

C = 60

nhớ ,mình tích lại

2 tháng 8 2016

góc C=180-(100+20)=60độ