Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải hpt?
Cách 1: \(\hept{\begin{cases}5x+3y=16\\4x+11y=30\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}20x+12y=64\\20x+55y=150\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}-43y=-86\\20x+115y=150\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}y=2\\20x+55.2=150\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}y=2\\x=2\end{cases}}\)
Cách 2: \(\hept{\begin{cases}5x+3y=16\\4x+11y=30\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=\frac{16-3y}{5}\\4.\frac{16-3y}{5}+11y=30\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=\frac{16-3y}{5}\\\frac{43}{5}y=\frac{86}{5}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=\frac{16-3.2}{5}\\y=2\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=2\\y=2\end{cases}}\)
Ta chia 9 đồng tiền đó thành 3 nhóm, mỗi nhóm có 3 đồng tiền.
Trong lần cân thứ nhất, đặt 2 nhòm bất kì lên 2 đĩa cân. Nếu cán cân nghiêng về bên nào thì bên còn lại là nhóm chứa đồng tiền giả. Nếu 2 đĩa cân thăng bằng, chứng tỏ nhóm ở ngoài chứa đồng tiền giả. Tóm lại ta sẽ xác định được nhóm chứa đồng tiền giả trong mọi trường hợp.
Khi đã xác định được nhóm chứa đồng tiền giả rồi, trong lần cân thứ hai, ta đặt 2 đồng xu trong nhóm đó vào 2 đĩa cân, nếu cán cân nghiêng về bên nào thì bên còn lại chính là đồng xu giả. Nếu cân thăng bằng thì đồng xu ở ngoài chính là đồng xu giả.
Như vậy ta xác định được đồng xu giả trong 2 lần cân.
\(a,bpt\Leftrightarrow2x>-18\Leftrightarrow x>-9\)
\(b,bpt\Leftrightarrow-5x< 120\Leftrightarrow x>-24\)
\(c,bpt\Leftrightarrow-x>-4\Leftrightarrow x< 4\)
\(\left(x^2-4\right)\left(x^2-10\right)-72=\left(x^2-7+3\right)\left(x^2-7-3\right)-72=\left(x^2-7\right)^2-3^2-72\)
\(=\left(x^2-7\right)^2-9^2=\left(x^2-7-9\right)\left(x^2-7+9\right)=\left(x^2-16\right)\left(x^2+2\right)\)
\(=\left(x-4\right)\left(x+4\right)\left(x^2+2\right)\)
\(a,\frac{AB}{CD}=\frac{4}{12}=\frac{1}{3}\)
\(b,\) Đổi: \(12m=120dm\)
\(\frac{CD}{EF}=\frac{120}{20}=6\)
Các câu còn lại tương tự.
Gọi tử ban đầu là \(x\left(x\ne-3\right)\)
Mẫu ban đầu là \(x+3\)(đây là lí do tại sao \(x\ne-3\))
Tử lúc sau là \(x+2\)
Mẫu lúc sau là \(x+3+2=x+5\)
Theo đề bài, ta có: \(\frac{x+2}{x+5}=\frac{1}{2}\)
Đến đây em tự giải nhé. (cũng dễ rồi)
a) \(x\left(2x-9\right)=3x\left(x-5\right)\)
\(\Leftrightarrow x.\left(2x-9\right)-x.3\left(x-5\right)=0\)
\(\Leftrightarrow x.\left[\left(2x-9\right)-3\left(x-5\right)\right]=0\)
\(\Leftrightarrow x.\left(2x-9-3x+15\right)=0\)
\(\Leftrightarrow x.\left(6-x\right)=0\)
\(\Leftrightarrow S=\left\{0;6\right\}\)
b) \(0,5x\left(x-3\right)=\left(x-3\right)\left(1,5x-1\right)\)
\(\Leftrightarrow0,5x\left(x-3\right)-\left(x-3\right)\left(1,5x-1\right)=0\)
\(\Leftrightarrow\left(x-3\right).\left[0,5x-\left(1,5x-1\right)\right]=0\)
\(\Leftrightarrow\left(x-3\right)\left(0,5x-1,5x+1\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(1-x\right)=0\)
\(+x-3=0\Rightarrow x=3\)
\(+1-x=0\Rightarrow x=1\)
\(\Rightarrow S=\left\{1;3\right\}\)
c) \(3x-15=2x\left(x-5\right)\)
\(\Leftrightarrow\left(3x-15\right)-2x\left(x-5\right)=0\)
\(\Leftrightarrow3\left(x-5\right)-2x\left(x-5\right)=0\)
\(\Leftrightarrow\left(3-2x\right)\left(x-5\right)=0\)
\(\Rightarrow3-2x=\frac{3}{2}\Rightarrow x-5\Rightarrow x=5\)
\(\Rightarrow S=\left\{5;\frac{3}{2}\right\}\)
a)
\(x\left(2\times-9\right)=3\times\left(\times-5\right)\)
\(\text{⇔}x.\left(2\times-9\right)-x.3\left(x-5\right)=0\)
\(\text{⇔}x.[\left(2\times-9\right)-3\left(x-5\right)]=0\)
\(\text{⇔}x.\left(2x-9-3x+15\right)=0\)
\(\text{⇔}x.\left(6-x\right)=0\)
\(\text{⇔}x=0\) hoặc \(6-x=0+6-x=0\)
\(\text{⇔}x=6\)
Vậy tập nghiệm của phương trình là \(S=\left\{0;6\right\}\) BIẾT MỖI CÂU A :))
bằng 71122033447028553276 nha