cho hình bình hành MNPQ có MN = 2MQ và m = 1200. Gọi IK lần lượt là trung điểm của MN, PQ và A là điểm đối xứng của Q qua M.
a, Tứ giác MIKQ là hình gì?
b, chứng minh tam giác AMI là tam giác đều.
c, chứng minh tứ giác AMPN là hình chữ nhật.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3A = 1.2.3 + 2.3.3 + 3.4.3 +... + n.(n+1).3
= 1.2.(3-0) + 2.3.(4-1) + ... + n.(n+1).[(n+2)-(n-1)]
= [1.2.3+ 2.3.4 + ...+ (n-1).n.(n+1)+ n.(n+1)(n+2)] - [0.1.2+ 1.2.3 +...+(n-1).n.(n+1)]
= n.(n+1).(n+2)
=>S=\(\text{ }\frac{\left[n.\left(n+1\right).\left(n+2\right)\right]}{3}\)
Ta thấy mỗi số hạng của tổng trên là tích của hai số tự nhên liên tiếp, khi đó:
Gọi a1 = 1.2 → 3a1 = 1.2.3 → 3a1 = 1.2.3 - 0.1.2
a2 = 2.3 → 3a2 = 2.3.3 → 3a2 = 2.3.4 - 1.2.3
a3 = 3.4 → 3a3 = 3.3.4 → 3a3 = 3.4.5 - 2.3.4
…………………..
an-1 = (n - 1)n → 3an-1 =3(n - 1)n → 3an-1 = (n - 1)n(n + 1) - (n - 2)(n - 1)n
an = n(n + 1) → 3an = 3n(n + 1) → 3an = n(n + 1)(n + 2) - (n - 1)n(n + 1)
Cộng từng vế của các đẳng thức trên ta có:
3(a1 + a2 + … + an) = n(n + 1)(n + 2)
A=|x-3|+|x-5|+|7-x| >= |x-3+7-x|+|x-5|=|4|+|x-5|=4+|x-5|
vì |x-5|>=0 với mọi x
=>A>=4+0=4
dấu "=" xảy ra khi
(x-3)(7-x)>=0 va x-5=0
<=>x>=3 và x<=7 va x=5
suy ra GTNN của A=4 khi x=5
phòng có lợi cho hắn là phòng số 3 vì nếu 10 con sư tử nhịn đói trong 3 năm thì đã từ dã cõi đời rồi.
\(H=\frac{1}{100}-\frac{1}{100\cdot99}-\frac{1}{99\cdot98}-...-\frac{1}{2\cdot1}\)
\(U=\frac{1}{100}-\left(\frac{1}{100\cdot99}+\frac{1}{99\cdot98}+...+\frac{1}{2\cdot1}\right)\)
\(U=\frac{1}{100}-\left(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{99\cdot100}\right)\)
\(H=\frac{1}{100}-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\right)\)
\(HU=\frac{1}{100}-\left(1-\frac{1}{100}\right)\)
\(UH=\frac{1}{100}-1+\frac{1}{100}\)
\(HU=\frac{2}{100}-1=-\frac{49}{50}\)