K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
22 tháng 10 2021

\(B=\sqrt{x-2}+\sqrt{11-x}\)

\(=\sqrt{x-2}.1+\sqrt{11-x}.1\)

\(\le\sqrt{\left|\left(x-2+11-x\right)\left(1+1\right)\right|}=3\sqrt{2}\)

Dấu \(=\)khi \(x-2=11-x\Leftrightarrow x=\frac{13}{2}\).

22 tháng 10 2021

ĐKXĐ:\(2\le x\le11\)

Có:\(B=\sqrt{x-2}+\sqrt{11-x}\)

Áp dụng bđt B.C.S ta có:

\(|\sqrt{x-2}+\sqrt{11-x}|\le\sqrt{\left(1+1\right)\left(x-2+11-x\right)}\)

\(\Leftrightarrow|\sqrt{x-2}+\sqrt{11-x}|\le3\sqrt{2}\)

\(\sqrt{x-2}+\sqrt{11-x}\le\left|\sqrt{x-2}+\sqrt{11-x}\right|\)

\(\sqrt{x-2}+\sqrt{11-x}\le3\sqrt{2}\)

Hay\(B\le3\sqrt{2}\)

Dấu "=" xảy ra <=>\(x-2=11-x\)

\(\Leftrightarrow x=\frac{13}{2}\)(Thỏa mãn ĐKXĐ)

Vậy Max\(B=3\sqrt{2}\)\(\Leftrightarrow x=\frac{13}{2}\)

22 tháng 10 2021

\(-2\sqrt{x^2}+2x+8\)

\(=-2\left|x\right|+2x+8\)

\(=-2x+2x+8\)

\(=8\)

22 tháng 10 2021

a, Áp dụng đ.lí Pytago vào tam giác DEF vuông tại D có:

DE2+DF2=EF2DE2+DF2=EF2

thay số:152+202=EF2152+202=EF2

⇒EF2=625⇒EF2=625

⇒EF=√625=25(cm)⇒EF=625=25(cm)

Áp dụng HTL vào tam giác DEF vuông tại D có

DE.DF=EF.D

I⇒15.20=25.EF⇒15.20=25.EF

⇒EF=15.2025=12(cm)⇒EF=15.2025=12(cm)

b, Làm tương tự như trên dc DI

22 tháng 10 2021

a) \(\Delta ABC\) vuông tại A có đường cao AH nên \(AH^2=BH.CH\left(htl\right)\)

\(\Rightarrow CH=\frac{AH^2}{BH}=\frac{4,8^2}{3,6}=6,4\left(cm\right)\)

\(\Rightarrow BC=BH+CH=3,6+6,4=10\left(cm\right)\)

\(\Delta ACH\)vuông tại H nên \(\tan C=\frac{AH}{CH}=\frac{4,8}{6,4}=\frac{3}{4}\Rightarrow\widehat{C}\approx36^052'\)

b) Xét \(\Delta ABC\)vuông tại A:

+) Tính góc B:

Ta có: \(\widehat{B}+\widehat{C}=90^0\Rightarrow\widehat{B}=90^0-\widehat{C}=90^0-30^0=60^0\)

+) Tính AB:

Ta có \(AB=AC.\tan C=12.\tan30^0=12.\frac{\sqrt{3}}{3}=4\sqrt{3}\left(cm\right)\)

+) Tính BC:

Ta có \(BC=\sqrt{AB^2+AC^2}=\sqrt{\left(4\sqrt{3}\right)^2+12^2}=\sqrt{48+144}=\sqrt{192}=8\sqrt{3}\left(cm\right)\)

c) \(\Delta ABC\)vuông tại A có đường cao AH nên \(AB^2=BH.BC\left(htl\right)\)

Xét \(\Delta ACD\)có B và I lần lượt là trung điểm của CD, AD nên BI là đường trung bình của \(\Delta ACD\)

\(\Rightarrow BI//AC\)(1)

Mặt khác \(\Delta ABC\)vuông tại A nên \(AB\perp AC\)(2)

Từ (1) và (2) \(\Rightarrow IB\perp AB\Rightarrow BK\perp AB\Rightarrow\Delta ABK\)vuông tại B

Xét \(\Delta ABK\)vuông tại B có đường cao BH nên \(AB^2=AH.AK\left(htl\right)\)

Mà \(AB^2=BH.BC\left(cmt\right)\)

\(\Rightarrow AH.AK=BH.BC\left(đpcm\right)\)

d) Vì \(AB\perp BI\left(cmt\right)\Rightarrow\Delta ABI\)vuông tại B

\(\Delta ABI\)vuông tại B có đường cao BE (vì \(BE\perp AI\)tại E) có đường cao AH nên \(\frac{1}{BE^2}=\frac{1}{BI^2}+\frac{1}{AB^2}\left(htl\right)\)(*)

Vì BI là đường trung bình của \(\Delta ACD\)(cmt) nên \(BI=\frac{AC}{2}\Rightarrow BI^2=\frac{AC^2}{4}\Rightarrow\frac{1}{BI^2}=\frac{4}{AC^2}\)(3)

Mặt khác \(\Delta ABC\)vuông tại A nên \(\sin C=\frac{AB}{BC}\Rightarrow\frac{AB}{BC}=\sin30^0=\frac{1}{2}\Rightarrow AB=\frac{BC}{2}\Rightarrow\frac{1}{AB^2}=\frac{4}{BC^2}\)(4)

Thay (3) và (4) vào (*), ta có:

\(\frac{1}{BE^2}=\frac{4}{AC^2}+\frac{4}{BC^2}\)(đpcm)

22 tháng 10 2021

đề đâu

22 tháng 10 2021

đề đâu mà giải được

22 tháng 10 2021

Bài 2 , 3 mình đang suy nghĩ  Làm tạm mấy bài sau trc.

Bài 4:

+) n4 co tận cùng là 1 , 6 , 5 => n8 - n4 chia hết cho 10 ( 1 )

+) n8 - n4 = n2 (n - 1 )( n + 1 )( n2 + 1 ) chia hết cho 3 và 4 ( 2 )

Từ ( 1 ) và ( 2 ) => ĐPCM

Bài 5 : 

\(A=2005^n+60^n-1897^n-168^n\)

Ta có : 

+) \(\hept{\begin{cases}2005^n\equiv1\left(mod4\right)\\1897^n\equiv1\left(mod4\right)\end{cases}}\)

\(\Rightarrow A\equiv1+0-1+0=0\left(mod4\right)\)

\(\Rightarrow A⋮4\)

+) \(\hept{\begin{cases}2005^n\equiv1\left(mod3\right)\\1897^n\equiv1\left(mod3\right)\end{cases}}\)

\(\Rightarrow A\equiv1+0-1+0=0\left(mod3\right)\)

\(\Rightarrow A⋮3\)

+) \(\hept{\begin{cases}2005^n\equiv1\left(mod167\right)\\1897^n\equiv1\left(mod167\right)\\168^n\equiv\left(mod167\right)\end{cases}}\)

\(\Rightarrow A\equiv1+60^n-60^n-1=0\left(mod167\right)\)

\(\Rightarrow A⋮2004\)

22 tháng 10 2021

Bài 6 : 

\(6^{2n}+19^n-2^{n-1}\)

\(=36^n+19^n-2.2^n\)

\(=\left(36^n-2^n\right)+\left(19^n-2^n\right)\)

Ta có : \(\hept{\begin{cases}36^n-2^n⋮34\\19^n-2^n⋮17\end{cases}\Rightarrow}6^{2n}+19^n-2^{n-1}\)

22 tháng 10 2021

Ta có: (x-y + (y-z) + (z-x) = 0

Đặt x - y = a, y-z = b, z-x = c thì a+b+c=0

Khi đó \(a^5+b^5+c^5⋮5abc\)

Vậy ta có đpcm

22 tháng 10 2021

Gọi thời gian 2 công nhân làm công việc lần lượt là x ; y ( y > x > 0 ) 

người thứ 2 làm ít hơn người thứ 2 là 8 giờ : ta có pt 

\(\frac{1}{x}-\frac{1}{y}=\frac{1}{8}\)(1) 

Theo bài ra ta có pt : \(\frac{1}{x}+\frac{1}{2y}=\frac{1}{4}\)(2) 

Từ (1) ; (2) ta có hệ pt \(\hept{\begin{cases}\frac{1}{x}-\frac{1}{y}=\frac{1}{8}\\\frac{1}{x}-\frac{1}{2y}=\frac{1}{4}\end{cases}}\)Đặt \(\frac{1}{x}=u;\frac{1}{y}=v\)

\(\Leftrightarrow\hept{\begin{cases}u-v=\frac{1}{8}\\u-\frac{1}{2}v=\frac{1}{4}\end{cases}}\Leftrightarrow\hept{\begin{cases}u=\frac{3}{8}\\v=\frac{1}{4}\end{cases}\Rightarrow\hept{\begin{cases}x=\frac{8}{3}\\y=4\end{cases}}}\)