Tìm x
a) \(\sqrt{2x-1}\) = 5
b) \(\sqrt{3x_{ }+2}\) = 1/4
c) \(\sqrt{x^2+\dfrac{1}{4}}\) = \(\sqrt{\dfrac{49}{81}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1\dfrac{1}{5}:\left\{\dfrac{5}{8}+\left[\dfrac{5}{3}-\left(-\dfrac{1}{4}\right)\right]\cdot\dfrac{9}{2^2}\right\}\)
\(=\dfrac{6}{5}:\left\{\dfrac{5}{8}+\left(\dfrac{5}{3}+\dfrac{1}{4}\right)\cdot\dfrac{9}{4}\right\}\)
\(=\dfrac{6}{5}:\left\{\dfrac{5}{8}+\dfrac{23}{12}\cdot\dfrac{9}{4}\right\}\)
\(=\dfrac{6}{5}:\left\{\dfrac{5}{8}+\dfrac{23\cdot3}{16}\right\}=\dfrac{6}{5}:\left(\dfrac{10}{16}+\dfrac{69}{16}\right)\)
\(=\dfrac{6}{5}\cdot\dfrac{16}{79}=\dfrac{96}{395}\)
Thể tích nước trong thùng ban đầu là:
\(V_1=x\cdot a\cdot b\left(dm^3\right)\)
Diện tích đáy trong thùng sau khi nghiêng là:
\(S_{đáy}=\dfrac{1}{2}\cdot\dfrac{3}{4}a\cdot8=3a\left(dm^2\right)\)
Thể tích nước sau khi nghiêng thùng là: \(V_2=3a\cdot b\left(dm^3\right)\)
Vì thể tích nước trước và sau khi nghiêng thùng đều không thay đổi nên \(x\cdot a\cdot b=3\cdot a\cdot b\)
=>x=3
Ta có; ΔABC=ΔDEF
=>AB=DE; BC=EF; AC=DF; \(\widehat{BAC}=\widehat{EDF};\widehat{ABC}=\widehat{DEF};\widehat{ACB}=\widehat{DFE}\)
Xét ΔBAM và ΔEDN có
AB=DE
\(\widehat{ABM}=\widehat{DEN}\)
BM=EN
Do đó: ΔBAM=ΔEDN
=>AM=DN và \(\widehat{BAM}=\widehat{EDN}\)
a: \(\widehat{MON}+\widehat{O_1}+45^0=180^0\)
=>\(\widehat{O_1}=180^0-90^0-45^0=45^0\)
Ta có: \(\widehat{O_1}=\widehat{MNO}\left(=45^0\right)\)
mà hai góc này là hai góc ở vị trí so le trong
nên OB//AM
b: Ta có: OB//AM
MA\(\perp\)AB
Do đó: OB\(\perp\)BA
\(A=\dfrac{1}{299}\left(1-\dfrac{1}{300}+\dfrac{1}{2}-\dfrac{1}{301}+\dfrac{1}{3}-\dfrac{1}{302}+...+\dfrac{1}{101}-\dfrac{1}{400}\right)\)
\(299A=1+\dfrac{1}{2}+...+\dfrac{1}{101}-\left(\dfrac{1}{300}+\dfrac{1}{301}+...+\dfrac{1}{400}\right)\)
Thêm bớt \(\dfrac{1}{102}+\dfrac{1}{103}+...+\dfrac{1}{299}\) ta được:
\(299A=1+\dfrac{1}{2}+...+\dfrac{1}{101}+\left(\dfrac{1}{102}+...+\dfrac{1}{299}\right)-\left(\dfrac{1}{102}+...+\dfrac{1}{299}\right)-\left(\dfrac{1}{300}+...+\dfrac{1}{400}\right)\)
\(299A=\left(1+\dfrac{1}{2}+...+\dfrac{1}{299}\right)-\left(\dfrac{1}{102}+\dfrac{1}{103}+...+\dfrac{1}{400}\right)\)
\(101B=1-\dfrac{1}{102}+\dfrac{1}{2}-\dfrac{1}{103}+\dfrac{1}{3}-\dfrac{1}{104}+....+\dfrac{1}{299}-\dfrac{1}{400}\)
\(101B=\left(1+\dfrac{1}{2}+...+\dfrac{1}{299}\right)-\left(\dfrac{1}{102}+\dfrac{1}{103}+...+\dfrac{1}{400}\right)\)
\(\Rightarrow299A=101B\)
\(\Rightarrow\dfrac{A}{B}=\dfrac{101}{299}\)
a: m\(\perp\)a
n\(\perp\)a
Do đó: m//n
b: m//n
=>\(\widehat{A_1}=\widehat{ABC}\)(hai góc so le trong)
=>\(\widehat{A_1}=72^0\)
c: Xét ΔABC có \(\widehat{BAC}+\widehat{ACB}+\widehat{ABC}=180^0\)
=>\(\widehat{C_1}=180^0-64^0-72^0=44^0\)
Áp dụng công thức: \(1+2+...+n=\dfrac{n\left(n+1\right)}{2}\)
\(\Rightarrow1-\dfrac{1}{1+2+...+n}=1-\dfrac{1}{\dfrac{n\left(n+1\right)}{2}}=1-\dfrac{2}{n\left(n+1\right)}\)
\(=\dfrac{n\left(n+1\right)-2}{n\left(n+1\right)}=\dfrac{n^2+n-2}{n\left(n+1\right)}=\dfrac{\left(n-1\right)\left(n+2\right)}{n\left(n+1\right)}\)
Do đó:
\(A=\dfrac{1.4}{2.3}.\dfrac{2.5}{3.4}.\dfrac{3.6}{4.5}...\dfrac{\left(n-1\right)\left(n+2\right)}{n\left(n+1\right)}\)
\(=\dfrac{1.2.3...\left(n-1\right)}{2.3.4...n}.\dfrac{4.5.6...\left(n+2\right)}{3.4.5...\left(n+1\right)}=\dfrac{1}{n}.\dfrac{n+2}{3}=\dfrac{n+2}{3n}\)
\(\Rightarrow A=\dfrac{B}{3}\)
\(\Rightarrow\dfrac{A}{B}=\dfrac{1}{3}\)
a: ĐKXĐ: x>=1/2
\(\sqrt{2x-1}=5\)
=>\(2x-1=5^2=25\)
=>2x=26
=>x=13(nhận)
b: ĐKXĐ: \(x>=-\dfrac{2}{3}\)
\(\sqrt{3x+2}=\dfrac{1}{4}\)
=>\(3x+2=\left(\dfrac{1}{4}\right)^2=\dfrac{1}{16}\)
=>\(3x=\dfrac{1}{16}-2=\dfrac{1}{16}-\dfrac{32}{16}=-\dfrac{31}{16}\)
=>\(x=-\dfrac{31}{48}\left(nhận\right)\)
c: \(\sqrt{x^2+\dfrac{1}{4}}=\sqrt{\dfrac{49}{81}}\)
=>\(x^2+\dfrac{1}{4}=\dfrac{49}{81}\)
=>\(x^2=\dfrac{49}{81}-\dfrac{1}{4}=\dfrac{115}{324}\)
=>\(x=\pm\dfrac{\sqrt{115}}{18}\)