giải chi tiết hộ mk:
a)\(x^4-8x^2+x+12=0\)
b) \(x^4+5x^3-10x^2+10x+4=0\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(P=x^2-x\sqrt{y}+x+y-\sqrt{y}+1\)
\(\Leftrightarrow\)\(2P=2x^2-2x\sqrt{y}+2x+2y-2\sqrt{y}+2\)
\(\Leftrightarrow\)\(2P=\left[\left(x^2-2x\sqrt{y}+y\right)+\frac{4}{3}\left(x-\sqrt{y}\right)+\frac{4}{9}\right]+\left(x^2+\frac{2x}{3}+\frac{1}{9}\right)+\left(y-\frac{2}{3}.\sqrt{y}+\frac{1}{9}\right)+\frac{4}{3}\)
\(\Leftrightarrow\)\(2P=\left(x-\sqrt{y}+\frac{2}{3}\right)+\left(x+\frac{1}{3}\right)^2+\left(y^2-\frac{1}{3}\right)^2+\frac{4}{3}\ge\frac{4}{3}\)
\(\Leftrightarrow\)\(2P\ge\frac{4}{3}\)
\(\Rightarrow\)\(P\ge\frac{2}{3}\)
Vậy \(P_{min}=\frac{2}{3}\)
àk chỗ \(\left(x-\sqrt{y}+\frac{2}{3}\right)\) mình nhầm nhé phải là \(\left(x-\sqrt{y}+\frac{2}{3}\right)^2\)
hihi tại nhìu số quá nên nhìn nhầm sorry :'P
Chỉ có thần tiên mới giúp được b. Cho a,b,c mà bảo chứng minh x,y,z :3
a)\(x^4-8x^2+x+12=0\)
\(\Leftrightarrow x^4-x^3-3x^2+x^3-x^2-3x-4x^2+4x+12=0\)
\(\Leftrightarrow x^2\left(x^2-x-3\right)+x\left(x^2-x-3\right)-4\left(x^2-x-3\right)=0\)
\(\Leftrightarrow\left(x^2-x-3\right)\left(x^2+x-4\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x^2-x-3=0\\x^2+x-4=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}\Delta\left(1\right)=\left(-1\right)^2-\left(-4\left(1\cdot3\right)\right)=13\\\Delta\left(2\right)=1^2-\left(-4\left(1\cdot4\right)\right)=17\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x_{1,2}=\frac{1\pm\sqrt{13}}{2}\\x_{1,2}=\frac{-1\pm\sqrt{17}}{2}\end{cases}}\)
b)\(x^4+5x^3-10x^2+10x+4=0\)
\(\Leftrightarrow x^4-2x^3+2x^2+7x^3-14x^2+14x+2x^2-4x+4=0\)
\(\Leftrightarrow x^2\left(x^2-2x+2\right)+7x\left(x^2-2x+2\right)+2\left(x^2-2x+2\right)=0\)
\(\Leftrightarrow\left(x^2-2x+2\right)\left(x^2+7x+2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x^2-2x+2=0\\x^2+7x+2=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}\Delta\left(1\right)=\left(-2\right)^2-4\cdot1\cdot2=-4< 0\left(loai\right)\\\Delta\left(2\right)=7^2-4\cdot1\cdot2=41\end{cases}}\)\(\Rightarrow x_{1,2}=\frac{-7\pm\sqrt{41}}{2}\)
Cảm ơn b Thắng Nguyễn