Cho tam/g ABC cs 3 góc nhọn( AB<AC) vẽ AH vuôg góc vs BC tại H, trên nửa mặt phẳng bờ AC cs chứa điểm B. Vẽ tia Cx//AB. Trên tia Cx lấy điểm D sao cho CD=AB, vẽ DK vuông góc vs BC tại K, Gọi O là trug điểm BC
a) C/m điểm H nằm giữa B và O
b) C/m AH=DK
c) C/m AC//BD
d) C/m 3 điểm A,O,D thẳg hàg
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(S=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+.....+\frac{1}{2011}-\frac{1}{2012}+\frac{1}{2013}\)
\(S=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{6}+.....+\frac{1}{2011}+\frac{1}{2012}+\frac{1}{2013}-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}.....+\frac{1}{2012}\right)\)
\(S=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+.....+\frac{1}{2011}+\frac{1}{2012}+\frac{1}{2013}-1-\frac{1}{2}-\frac{1}{3}-........-\frac{1}{1006}\)
\(S=\frac{1}{1007}+\frac{1}{1008}+.......+\frac{1}{2011}+\frac{1}{2012}+\frac{1}{2013}\)
\(\Rightarrow\left(S-P\right)^2=\left(\frac{1}{1007}+\frac{1}{1008}+....+\frac{1}{2012}+\frac{1}{2013}-\frac{1}{1007}-\frac{1}{1008}-....-\frac{1}{2012}-\frac{1}{2013}\right)^2\)
\(\Rightarrow\left(S-P\right)^2=0\)
Vậy \(\left(S-P\right)^2=0\)
\(S=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{2011}-\frac{1}{2012}+\frac{1}{2013}\)
\(S=\left(1+\frac{1}{3}+...+\frac{1}{2013}\right)-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2012}\right)+\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2012}\right)\)
\(S=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2012}+\frac{1}{2013}\right)-\left(1+\frac{1}{2}+...+\frac{1}{1006}\right)\)
\(S=\frac{1}{1007}+\frac{1}{1008}+...+\frac{1}{2013}\)
\(\Rightarrow S-P=0\)
\(\Rightarrow\left(S-P\right)^{2013}=0\)
1 + 22 + 23 + ... + 22005
Gọi dãy số trên là A
A = \(1+2^2+2^3+....+2^{2005}\)
A =\(2^0+2^2+2^3+....+2^{2005}\)
A + \(2^1\)= \(2^0+2^1+2^2+2^3+....+2^{2005}\)
( A + 2 ) x 21 = \(\left(2^0+2^1+2^2+2^3+....+2^{2005}\right)\times2^1\)
Ax2 + 4 =\(2^1+2^2+2^3+2^4+....+2^{2006}\)
4 + A x 2 - A =\(2^1+2^2+2^3+2^4+....+2^{2006}-\left(1+2^2+2^3+...2^{2005}\right)\)
4 + A = \(2^1+2^2+2^3+2^4+....+2^{2006}-1-2^2-2^3-....-2^{2005}\)
4 + A = \(2^{2006}-1\)
A=\(2^{2006}-1-4\)
A = \(2^{2006}-5\)
Mà \(2^{2006}-5< 2^{2006}\)
\(\Rightarrow1+2^2+2^3+....+2^{2005}< 2^{2006}\)