Mời các bạn thử sức với bài toán sau:
Cho a, b là hai số dương thỏa mãn \(\sqrt{ab}=\frac{a+b}{a-b}.\) Tìm Min \(P=ab+\frac{a-b}{\sqrt{ab}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
trời ơi! Đoàn Thanh Bảo An lớp mấy rồi mà ko biết kb là j?
đkxđ x khác 6
(x+2).360/x-6=360
360x + 720 =360x - 2160
360x -360x = -2160 -720
x = -2880
\(x^2+5y^2+2y-4xy-3=0\)
\(x^2-4xy+4y^2+y^2+2y+1-4=0\)
\(\left(x-2y\right)^2+\left(y+1\right)^2-4=0\)
Vì \(\left(x-2y\right)^2\) lớn hơn hoặc bằng 0
và \(\left(y+1\right)^2\) lớn hơn hoặc bằng 0
Nên \(\left(x-2y\right)^2+\left(y+1\right)^2-4\) lớn hơn hoặc bằng -4
nên GTNN là -4
ban đầu m cũng làm giống bạn, nhưng đọc lại đề bài m cảm thấy khó hiểu : tìm X để cho Y thỏa mãn
đề m thi HK2 ấy
P = ab + \(\frac{a-b}{\sqrt{ab}}\)
Thay a - b = \(\frac{a+b}{\sqrt{ab}}\)vào P
=> P = ab + \(\frac{a+b}{\sqrt{ab}\sqrt{ab}}\)
= ab + \(\frac{a+b}{ab}\)>= 2\(\sqrt{a+b}\)
Làm tiếp cứ đi vòng vòng mà không có lối ra.
đề tuyển sinh VT năm nào gần đây thì phải