\(|\)\(\frac{1}{2}\)x + 1 \(|\)- 4 = 0
giai dum mk nha
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
+) Min: \(A=\frac{x^2}{x^4+x^2+1}\ge0\forall x\)
Dấu "=" <=> x=0
+) Max: \(1-3A=\frac{x^4-2x^2+1}{x^4+x^2+1}=\frac{\left(x^2-1\right)^2}{x^4+x^2+1}\ge0\)
\(\Rightarrow A\le\frac{1}{3}\)Dấu "=" <=> x= 1,-1
a,ĐKXĐ \(x^3-8\ne0\Leftrightarrow x^3\ne8\Leftrightarrow x\ne2\)
b,\(\Leftrightarrow3x^2+6x+12=0\)
\(\Leftrightarrow3\left(x^2+2x+1\right)+9=0\)
\(\Leftrightarrow3\left(x+1\right)^2+9=0\)(VÔ LÝ VÌ 3(x+1)2>=0 =>3(x+1)2+9>0)
vì vây ko có giá trị x để F =0
C, VỚI ĐKXĐ trên ,ta có
\(F=\frac{3\left(x^2+2x+4\right)}{\left(x-2\right)\left(x^2+2x+4\right)}\)
\(=\frac{3}{x-2}\)
ta có: \(x+\frac{1}{x}=3\)
\(\Rightarrow\left(x+\frac{1}{x}\right)^2=3^2\)
\(\Leftrightarrow x^2+2.x.\frac{1}{x}+\left(\frac{1}{x}\right)^2=9\)
\(\Leftrightarrow x^2+2+\frac{1}{x^2}=9\)
\(\Leftrightarrow x^2+\frac{1}{x^2}=7\)
\(\Rightarrow\left(x^2+\frac{1}{x^2}\right)^2=7^2\)
\(\Leftrightarrow\left(x^2\right)^2+2.x^2.\left(\frac{1}{x^2}\right)+\left(\frac{1}{x^2}\right)^2=49\)
\(\Leftrightarrow x^4+2+\frac{1}{x^4}=49\)
\(\Leftrightarrow x^4+\frac{1}{x^4}=47\)
\(x+\frac{1}{x}=3\Rightarrow\left(x+\frac{1}{x}\right)^2=x^2+2+\frac{1}{x^2}=9\Rightarrow x^2+\frac{1}{x^2}=7\)
\(\Rightarrow\left(x^2+\frac{1}{x^2}\right)^2=x^4+2+\frac{1}{x^4}=49\Rightarrow x^4+\frac{1}{x^4}=47\)
a) Ta có: \(|-5x|-16=3x\)
Đk: \(3x\ge0\Rightarrow x\ge0\)
\(\Rightarrow\orbr{\begin{cases}-5x-16=3x\\5x-16=3x\end{cases}}\Rightarrow\orbr{\begin{cases}-5x-3x=16\\5x-3x=16\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}-8x=16\\-2x=16\end{cases}\Rightarrow\orbr{\begin{cases}x=-2\\x=8\end{cases}}}\)
Mà x \(\ge0\)\(\Rightarrow x=8\)
b) \(|3x-2|=1-x\)
\(\Rightarrow\orbr{\begin{cases}3x-2=1-x\\3x-2=-1+x\end{cases}\Rightarrow}\orbr{\begin{cases}3x+x=1+2\\3x-x=-1+2\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}4x=3\\2x=1\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{3}{4}\\x=\frac{1}{2}\end{cases}}\)
Vậy: x = \(\frac{3}{4}\)hoặc x\(=\frac{1}{2}\)
c) Ta có: \(|-2x|=4x-10\)
Đk: \(4x-10\ge0\Rightarrow4x\ge10\Rightarrow x\ge\frac{5}{2}\)
\(\Rightarrow\orbr{\begin{cases}-2x=4x-10\\2x=4x-10\end{cases}}\Rightarrow\orbr{\begin{cases}-2x-4x=-10\\2x-4x=-10\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}-6x=-10\\-2x=-10\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{5}{3}\\x=5\end{cases}}\)
mà x\(\ge\frac{5}{2}\)\(\Rightarrow x=5\)
pt <=> x^4+x^3+x^2+x^2+x+1=0
<=> x^4+x^2+x^3+x+x^2+1=0
<=> x^2(x^2+1)+x(x^2+1)+(x^2+1)=0
<=>(x^2+x+1)(x^2+1)=0
<=> x^2+x+1=0 (Vô nghiệm)
hoặc x^2+1=0 (vô lý)
=>pt vô nghiệm
tk mk nhé
a) Ta có: \(\frac{2}{x+1}-\frac{1}{x-2}=\frac{3x-11}{\left(x+1\right)\left(x-2\right)}\)
\(\Rightarrow\frac{2\left(x-2\right)}{\left(x+1\right)\left(x-2\right)}-\frac{x+1}{\left(x+1\right)\left(x-2\right)}=\frac{3x-11}{\left(x+1\right)\left(x-2\right)}\)
\(\Rightarrow\frac{x-5}{\left(x+1\right)\left(x-2\right)}=\frac{3x-11}{\left(x+1\right)\left(x-2\right)}\)\(\Rightarrow x-5=3x-11\Rightarrow x-3x=-11+5\Rightarrow-2x=-6\Rightarrow x=3\)
b)Ta có: \(\frac{15-6x}{3}>5\)
\(\Rightarrow15-6x>15\)
\(\Rightarrow6x< 0\)
\(\Rightarrow x< 0\).
Kb với mình nha!
\(\widehat{ABE}=\widehat{ABC}+\widehat{CBE}=\widehat{ABC}+60^0\) (do tam giác BCE đều)
\(\widehat{FDA}=\widehat{ADC}+\widehat{CDF}=\widehat{ADC}+60^0\) (do tam giác DFC đều)
ABCD là hình bình hành => \(\widehat{ABC}=\widehat{AD}C\)
suy ra: \(\widehat{ABE}=\widehat{FDA}\)
Xét \(\Delta ABE\)và \(\Delta FDA\)có:
\(AB=FD\) (cùng bằng DC)
\(\widehat{ABE}=\widehat{FDA}\) (cmt)
\(BE=DA\) (cùng bằng BC)
suy ra: \(\Delta ABE=\Delta FDA\) (c.g.c)
\(\Rightarrow\)\(AE=AF\) (1)
Ta có: \(\widehat{FCE}=360^0-\widehat{DCF}-\widehat{BCE}-\widehat{BCD}\)
\(=360^0-60^0-60^0-\widehat{BCD}\)
\(=240^0-\widehat{BCD}\)
\(=240^0-\left(180^0-\widehat{ABC}\right)=60^0+\widehat{ABC}\)
suy ra: \(\widehat{FCE}=\widehat{ABE}\)
dễ dàng c/m: \(\Delta ABE=\Delta FCE\) (c.g.c)
\(\Rightarrow\)\(AE=FE\) (2)
Từ (1) và (2) suy ra: \(AF=FE=EA\)
hay \(\Delta AEF\)đều
\(\Rightarrow\)\(\widehat{EAF}=60^0\)
\(|\frac{1}{2}x+1|-4=0\)
\(\Rightarrow|\frac{1}{2}x+1|=4\)
\(\Rightarrow\orbr{\begin{cases}\frac{1}{2}x+1=4\\\frac{1}{2}x+1=-4\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}\frac{1}{2}x=3\\\frac{1}{2}x=-5\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x=6\\x=-10\end{cases}}\)
Vậy x = 6 hoặc x = -10
_Chúc bạn học tốt_