x-6/2012+x-8/2018=x-2000/18+x-2005/13
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Rightarrow|\frac{1}{2}+1|=0+4=4\)
\(\Rightarrow\orbr{\begin{cases}\frac{1}{2}x+1=4\\\frac{1}{2}x+1=-4\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}\frac{1}{2}x=4-1=3\\\frac{1}{2}x=-4-1=-5\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=3:\frac{1}{2}=6\\x=-5:\frac{1}{2}=-10\end{cases}}\)
\(\left|\frac{1}{2}x+1\right|-4=0\left(1\right)\)
Ta có: ( 1 ) \(\Leftrightarrow\frac{1}{2}x+1=4\Leftrightarrow\frac{1}{2}x=4-1=3\Leftrightarrow x=6\)
hoặc \(\Leftrightarrow\frac{1}{2}x+1=-4\Leftrightarrow\frac{1}{2}x=-5\Leftrightarrow x=-10\)
Vậy tập nghiệm của phương trình ( 1 ): \(S=\left\{6;-10\right\}\)
Ta có: \(C=\frac{3x^2-7x^2-12+45}{3x^3-19x^2+33x-9}\) ĐKXĐ: x khác 3, 1/3
\(=\frac{\left(x-3\right)^2\left(2x+5\right)}{\left(x-3\right)^2\left(3x-1\right)}\)
\(=\frac{2x+5}{3x-1}\)
Để C>0, ta có:
-5/2<x<1/3 (thỏa mãn ĐKXĐ)
Đặt \(a=\frac{9+3\sqrt{17}}{4}\) và \(b=\frac{3+\sqrt{17}}{4}\)khi đó \(a=3b\)và \(a+1=2b^2=c=\frac{13+3\sqrt{17}}{4}\)
Áp dụng BĐT AM-GM ta thu được các BĐT sau: \(x^2+b^2y^2\ge2bxy\)
\(by^2+z^2\ge2byz\)
\(a\left(z^2+x^2\right)\ge2azx\)
Cộng các vế theo các vế các BĐT thu được để có:
\(\left(a+1\right)\left(x^2+z^2\right)+2b^2y^2\ge2b\left(xy+yz\right)+2azx\)
Hay \(c\left(x^2+y^2+z^2\right)\ge2b\left(xy+yz+3zx\right)\). Từ đó ta thay các giá trị của \(xy+yz+3zx\); b và c để có được
\(P=x^2+y^2+z^2\ge\frac{\sqrt{17}-3}{2}\)
Cuối cùng, với \(x=z=\frac{1}{\sqrt[4]{17}}\)và \(y=\sqrt{\frac{13\sqrt{17}-51}{34}}\)( Thỏa mãn giả thiết ) thì \(P=\frac{\sqrt{17}-3}{2}\)
Nên ta kết luận \(\frac{\sqrt{17}-3}{2}\)là giá trị nhỏ nhất của biểu thức \(P=x^2+y^2+z^2\)
ĐKXĐ \(\hept{\begin{cases}x^2-4\ne0\\x-2\ne0\end{cases}}\Leftrightarrow x\ne\pm2\)
\(P=\frac{8}{x^2-4}-\frac{2}{x-2}\)
\(=\frac{8-2x-4}{\left(x-2\right)\left(x+2\right)}\)
\(=\frac{-2\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}\)
\(=-\frac{2}{x+2}\)
c,để P âm \(\Leftrightarrow\frac{-2}{x+2}< 0\Leftrightarrow x+2>0\Leftrightarrow x>-2\)và \(x\ne2\)
Lần sau ghi cái trị tuyệt đối thẳng lên bạn :))))
a) \(2\left|x\right|-\left|x+1\right|=2\left(1\right)\)
- Nếu \(x>0>-1\Leftrightarrow x>0;x+1>0\)
thì \(pt\left(1\right):2x-x-1=2\Leftrightarrow x=3\)( nhận )
- Nếu \(-1\le x\le0\Leftrightarrow x\le0;x+1\ge0\)
thì \(pt\left(1\right):-2x-x-1=2\Leftrightarrow x=-1\)( nhận )
- Nếu \(x< -1< 0\Leftrightarrow x< 0;x+1< 0\)
thì \(pt\left(1\right):-2x+x+1=2\Leftrightarrow x=-1\)( loại )
Vậy phương trinh có 2 nghiệm x = 3 và x = -1
b) \(\left|3x-5\right|=\left|x+2\right|\)
\(\Leftrightarrow\orbr{\begin{cases}3x-5=x+2\\3x-5=-x-2\end{cases}\Leftrightarrow\orbr{\begin{cases}3x-x=2+4\\3x+x=5-2\end{cases}}}\)
\(\Leftrightarrow\orbr{\begin{cases}2x=7\\4x=3\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{7}{2}=3,5\\x=\frac{3}{4}=0,75\end{cases}}}\)
Vậy phương trình trên có 2 nghiệm x = 3,5 và x = 0,75
a) 2IxI-Ix+1I=2
x | -1 | 0 | |||
IxI | -x | I | -x | 0 | x |
x+1 | -x-1 | 0 | x+1 | I | x+1 |
+)x<-1
<=>-2x+x+1=2
<=>-x=1
<=>x=-1(không TMĐK)
+)-1\(\le\)x<0
<=>-2x-x-1=2
<=>-3x=3
<=>x=-1(TMĐK)
+)x\(\ge\)0
<=>2x-x-1=2
<=>x=3(TMĐK)
vậy tập nghiệm của pt đã cho là :{-1;3}
mk chỉnh lại đề nha
\(\frac{x-6}{2012}+\frac{x-8}{2010}=\frac{x-2000}{18}+\frac{x-2005}{13}\)
\(\Leftrightarrow\)\(\frac{x-6}{2012}-1+\frac{x-8}{2010}-1=\frac{x-2000}{18}-1+\frac{x-2005}{13}-1\)
\(\Leftrightarrow\)\(\frac{x-2018}{2012}+\frac{x-2018}{2010}=\frac{x-2018}{18}+\frac{x-2018}{13}\)
\(\Leftrightarrow\)\(\left(x-2018\right)\left(\frac{1}{2012}+\frac{1}{2010}-\frac{1}{18}-\frac{1}{13}\right)=0\)
\(\Leftrightarrow\)\(x-2018=0\) (1/2012 + 1/2010 - 1/18 - 1/13 # 0)
\(\Leftrightarrow\)\(x=2018\)
Vậy...