K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 5 2018

Bài j z bn?

9 tháng 5 2018

Mình có kèm ảnh theo nhũng trang không hiện

9 tháng 5 2018

Đáp án là : 

Quãng đường từ Đắk Lắk đến Đắk Nông dài : 

150 km . 

9 tháng 5 2018

\(A=2x^2+5y^2-2xy+2y+2x\)

\(2A=4x^2+10y^2-4xy+4y+4x\)

\(2A=\left(4x^2-4xy+y^2\right)+9y^2+4y+4x\)

\(2A=\left[\left(2x-y\right)^2+2\left(2x-y\right)+1\right]+\left(9y^2+6y+1\right)-2\)

\(2A=\left(2x-y+1\right)^2+\left(3y+1\right)^2-2\)

Do  \(\left(2x-y+1\right)^2\ge0\)

      \(\left(3y+1\right)^2\ge0\)

\(\Rightarrow2A\ge-2\)

\(\Leftrightarrow A\ge-1\)

Dấu "=" xảy ra khi :

\(\hept{\begin{cases}2x-y+1=0\\3y+1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{-2}{3}\\y=\frac{-1}{3}\end{cases}}\)

Vậy ...

9 tháng 5 2018

\(A=x^2-2xy+y^2+x^2+2x+1+y^2+2y+1+3y^2-2\)

\(A=\left(x-y\right)^2+\left(x+1\right)^2+\left(y+1\right)^2+3y^2-2\)

\(Do\left(x-y\right)^2+\left(x+1\right)^2+\left(y+1\right)^2+3y^2>=0\)

\(nenA>=-2\)

vậy gtnn của A là -2 

9 tháng 5 2018

gọi vận tốc dự định là x(x>0,đv:km/h)

vận tốc khi đi là x+10(km/h)

thời gian dự định là 10-7=3h

thời gian thực tế là 9h24p-7h=2h24p=2,4h

theo bài ra ta có PT 3x=2,4(x+10)

                              \(\Leftrightarrow3x=2,4x+24\)

                               \(\Leftrightarrow x=40\left(tm\right)\)

vây V đự định là 40km/h

9 tháng 5 2018

ĐKXĐ \(\hept{\begin{cases}x\ne0\\x\ne\pm1\end{cases}}\)

với ĐKXĐ ta có

=\(\left(\frac{x^2+2x+1-x^2+2x-1}{\left(x+1\right)\left(x-1\right)}\right):\frac{2x}{7\left(x-1\right)}\)

=\(\frac{4x}{\left(x+1\right)\left(x-1\right)}\times\frac{7\left(x-1\right)}{2x}\)

=\(\frac{14}{x+1}\)

b, x=6(t/m)

khi x=6 thì A=\(\frac{14}{6+1}=2\)

c,A=7<=>\(\frac{14}{x+1}=7\)

         \(\Leftrightarrow7x+7=14\)

           \(\Leftrightarrow7x=7\Leftrightarrow x=1\left(loại\right)\)

Vậy ko có giá trị x để A=7

9 tháng 5 2018

Ta có: \(\frac{ab}{6+a-c}+\frac{bc}{6+b-a}+\frac{ca}{6+c-b}\) 

\(=\frac{ab}{2a+b}+\frac{bc}{2b+c}+\frac{ca}{2c+a}\) 

Áp dụng BĐT \(\frac{1}{a+b+c}\le\frac{1}{9}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\) với a,b>0  

\(VT\le\frac{1}{9}\left(\frac{ab}{a}+\frac{ab}{a}+\frac{ab}{b}\right)+\frac{1}{9}\left(\frac{bc}{b}+\frac{bc}{b}+\frac{bc}{c}\right)+\frac{1}{9}\left(\frac{ca}{c}+\frac{ca}{c}+\frac{ca}{a}\right)=\frac{1}{3}\left(a+b+c\right)=2\)

9 tháng 5 2018

a)  Áp dụng định lí Pi-ta-go vào tam giác ABC vuông tại A có

                 AB2  +  AC2  =  BC2

=>           62  +  AC2  = 102

=>            AC2  =  64

=>             AC=  8

Ta có  BD là đường phân giác của tam giác ABC

=>   \(\frac{AD}{DC}=\frac{AB}{BC}\)

=>   \(\frac{AD}{AD+DC}=\frac{AB}{AB+BC}\)

=>    \(\frac{AD}{AC}=\frac{AB}{AB+BC}\)

=>  \(\frac{AD}{8}=\frac{6}{6+10}\)

=>     \(\frac{AD}{8}=\frac{6}{16}\)

=>  \(AD=\frac{8.6}{16}\)

=>  AD = 3

 Mặt khác : DC = AC - AD

   =>   DC  = 8  -  3  = 5

b) Xét  tam giác ABC và tam giác EDC có:

         \(\widehat{BAC}=\widehat{DEC}=90^o\) 

         \(\widehat{ACB}\) chung

=> tam giác ABC đồng dagj với tam giác  EDC  ( g.g)

c)  Xét tam giác FAD và tam giác FEB có

   \(\widehat{FAD}=\widehat{FEB}=90^o\)

   góc  F  chung

=> tam giác FAD đồng dạng với tam giác FEB

=>   \(\frac{FA}{FE}=\frac{FD}{FB}\)

=>  \(FA\times FB=FD\times FE\)

9 tháng 5 2018

quãng đường là 15 km nha bn