K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 6 2018

\(A=\frac{x^2-4x+1}{x^2}=\frac{x^2-4x+4-3}{x^2}=\frac{\left(x-2\right)^2-3}{x^2}\)

Ta có: \(x^2>0\Rightarrow GTNN\) của (x-2)2-3 có giá trị âm

=> (x-2)2 > hoặc = 0 => GTNN của tử số  là - 3

Khi đó: (x-2)2 = 0 <=> x - 2 = 0 <=> x = 2

=> Mẫu số: 22 = 4

Vậy GTNNA = -3/4 khi x = 2

8 tháng 6 2018

\(A=\frac{x^2-4x+1}{x^2}\)

\(A=\frac{x^2}{x^2}-\frac{4x}{x^2}+\frac{1}{x^2}\)

\(A=1-\frac{4}{x}+\frac{1}{x^2}\)

\(A=\left(\frac{1}{x^2}-\frac{4}{x}+4\right)-3\)

\(A=\left(\frac{1}{x}-2\right)^2-3\)

Mà  \(\left(\frac{1}{x}-2\right)^2\ge0\forall x\)

\(\Rightarrow A\ge-3\)

Dấu "=" xảy ra khi :

\(\frac{1}{x}-2=0\Leftrightarrow\frac{1}{x}=2\Leftrightarrow x=\frac{1}{2}\)

Vậy  \(A_{Min}=-3\Leftrightarrow x=\frac{1}{2}\)

20 tháng 11 2019

Câu hỏi của Hoàng Lê Minh - Toán lớp 8 - Học toán với OnlineMath

8 tháng 6 2018

\(P=\left(\frac{x}{x^2-25}-\frac{x-5}{x^2+5x}\right):\frac{10x-25}{x^2+5x}+\frac{x}{5-x}\)

\(=\left[\frac{x}{\left(x-5\right)\left(x+5\right)}-\frac{x-5}{x\left(x+5\right)}\right]:\frac{10x-25}{x^2+5x}+\frac{x}{5-x}\)

\(=\left[\frac{x^2}{x\left(x-5\right)\left(x+5\right)}-\frac{\left(x-5\right)^2}{x\left(x-5\right)\left(x+5\right)}\right]:\frac{10x-25}{x^2+5x}+\frac{x}{5-x}\)

\(=\frac{x^2-\left(x^2-10x+25\right)}{x\left(x-5\right)\left(x+5\right)}:\frac{10x-25}{x\left(x+5\right)}+\frac{x}{5-x}\)

\(=\frac{10x-25}{x\left(x-5\right)\left(x+5\right)}.\frac{x\left(x+5\right)}{10x-25}+\frac{x}{5-x}\)

\(=\frac{1}{x-5}-\frac{x}{x-5}\)

\(=\frac{1-x}{x-5}=-\frac{x-1}{x-5}=-\frac{x-5+4}{x-5}=-1-\frac{4}{x-5}\)

Để P nguyên <=> x - 5 thuộc Ư(4) = {1;-1;2;-2;4;-4}

Ta có bảng:

x - 51-12-24-4
x647391

Vậy....

8 tháng 6 2018

\(ĐKXĐ:x\ne0;x\ne\pm5;x\ne\frac{5}{2}\)

7 tháng 6 2018

1/ đề sai vd: 2+3=5 là số nguyên tố

2/ \(4x^2-a^2+y^2-16b^2+4xy+8ab\)

\(=\left[\left(2x\right)^2+2.2xy+y^2\right]-\left[a^2+2.4ab-\left(4b\right)^2\right]\)

\(=\left(2x+y\right)^2-\left(a-4b\right)^2\)

\(=\left(2x+y+a-4b\right)\left(2x+y-a+4b\right)\)

3/

\(M=\left(x-1\right)\left(x+5\right)\left(x^2+4x+5\right)\)

\(=\left(x^2+5x-x-5\right)\left(x^2+4x+5\right)\)

\(=\left(x^2+4x-5\right)\left(x^2+4x+5\right)\)

\(=\left(x^2+4x\right)^2-5^2\)

\(=\left(x^2+4x\right)^2-25\)

Vì \(\left(x^2+4x\right)^2\ge0\)

\(\Rightarrow\left(x^2+4x\right)^2-25\ge-25\)

\(\Rightarrow M\ge-25\)

Dấu "=" xảy ra khi x = 0 hoặc x = -4

Vậy Mmin = -25 khi x = 0 hoặc x = -4