cho A = \(\frac{\sqrt{x}+1}{\sqrt{x}-1}+\frac{\sqrt{x}-1}{\sqrt{x}+1}-\frac{3\sqrt{x}+1}{x-1}\)
x>-0; x khác 1
a) tìm x thuộc Z để A thuộc Z
b)tìm m đẻ pt mA=\(\sqrt{x}-2\\\)có 2 nghiệm phân biệt
c)tìm min A
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) GIA SU n=3 (dung) 8>7
gia su dung voi moi k thuocN* (k>=3)
suy ra 2^k>2k+1 (k>=3)
\(2^{k+1}=2^k+2^k\)
<=>\(2^{k+1}>2\left(2k+1\right)\)
<=>\(2^{k+1}>4k+2\)
(2k>1 voi k>=3)=>\(4k+2>2k+3\)
<=>\(2^{k+1}>2k+3\)dung voi moi k thuoc N* (k>=3)
b) tuong tu
Đổi 20 phút = 1/3 giờ
Gọi vận tốc của tàu hỏa từ A đến B là x (x > 0) (km/h)
thì vận tốc tàu hỏa từ B đến C là x + 5 (km/h)
Thời gian tàu hỏa đi từ A đến B là 40/x (h)
Thời gian tàu hỏa đi từ B đến C là 30/(x+5) (h)
Theo bài ra ta có:
40/x + 30/(x+5) +1/3 = 2
<=> 120(x + 5) +90x + x(x + 5)= 6x(x + 5)
<=> 120x + 600 + 90x + x^2 + 5x = 6x^2 + 30x
<=> (6x^2 - x^2) + 30x - 120x - 90x - 5x = 600
<=> 5x^2 - 185x = 600
<=> 5x^2 - 185x - 600 = 0
<=> 5(x^2 - 37x - 120) = 0
<=> x^2 - 37x - 120 = 0
<=> x^2 - 40x + 3x - 120 = 0
<=> x(x - 40) + 3(x - 40) = 0
<=> (x + 3)(x - 40) = 0
<=> x = -3 (KTM)
hoặc x = 40 (TM)
Vậy vận tốc tàu hỏa đi từ A đến B là 40km/h
Gọi vận tốc tàu hỏa khi đi trên quãng đường AB là : x(km/h;x>0)
Thời gian tàu hỏa đi hết quãng đường AB là : 40/x (km/h)
Thời gian tàu hỏa đi hết quãng đường BC là : 30/(x + 5) (km/h)
Theo bài ra ta có phương trình : 40/x + 30/(x + 5) + 1/3 = 2
Biến đổi pt ta được : x^2 - 37x - 120 = 0
<=> x = -3(km);x = 40(tm)
Đáp số : 40 km/h
P\(=\left(\frac{x-\sqrt{x}+1-x}{x-\sqrt{x}+1}\right).\left(\frac{\sqrt{x^3}+1}{x+2\sqrt{x}+1}\right) \)
\(=\frac{1-\sqrt{x}}{x-\sqrt{x}+1}.\frac{\left(\sqrt{x}+1\right).\left(x+\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)^2}\)
\(\frac{1-\sqrt{x}}{\sqrt{x}+1}\)
\(6\left(x^2+y^2+z^2\right)+10\left(xy+yz+zx\right)+2\left(\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\right)\)
\(=5\left(x+y+z\right)^2+\left(x^2+y^2+z^2\right)+2\left(\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\right)\)
\(\ge5.\left(\frac{3}{4}\right)^2+\frac{\left(x+y+z\right)^2}{3}+\frac{2.9}{4\left(x+y+z\right)}\)
\(=5.\left(\frac{3}{4}\right)^2+\frac{\left(\frac{3}{4}\right)^2}{3}+\frac{2.9}{\frac{4.3}{4}}=9\)
Câu a:
\(A=\frac{\sqrt{x}+1}{\sqrt{x}-1}+\frac{\sqrt{x}-1}{\sqrt{x}+1}-\frac{3\sqrt{x}+1}{x-1}\)
\(=\frac{\left(\sqrt{x}+1\right)^2+\left(\sqrt{x}-1\right)^2-3\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\frac{2x+2-3\sqrt{x}-1}{x-1}=\frac{2x-3\sqrt{x}+1}{x-1}\)
\(=\frac{\left(2\sqrt{x}-1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\frac{\left(2\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)}=2-\frac{3}{\left(\sqrt{x}+1\right)}\)
A nguyên khi và chỉ khi \(3⋮\left(\sqrt{x}+1\right)\)
Câu b : \(\frac{m\left(2\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)}=\sqrt{x}-2\Leftrightarrow2m\sqrt{x}-m-x+\sqrt{x}+2=0\)
\(\Leftrightarrow x-\left(2m+1\right)\sqrt{x}+m-2=0\)phương trình có hai nghiệm phân biệt khi
\(\Delta>0\)hay \(\Delta=\left(2m+1\right)^2-\left(m-2\right)4=m^2+9>0\forall m\)
Câu C: để \(A=2-\frac{3}{\sqrt{x}+1}\ge2-\frac{3}{0+1}=-1\)\(\Rightarrow A_{Min}=-1\)khi \(x=0\)