y+ căn y^2+111)=111. Tính x+y
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử tồn tại n để 2n -1 =a2
\(\Rightarrow a\)lẻ. Khi đó: a2 - 1 = 2n - 2
\(\Leftrightarrow\left(a-1\right)\left(a+1\right)=2\left(2^{n-1}-1\right)\)
Vì a lẻ \(\Rightarrow a=2k+1\Rightarrow2k\left(2k+2\right)=2\left(2^{n-1}-1\right)\Rightarrow4k\left(k+1\right)=2\left(2^{n-1}-1\right)\)(vô lý)
Vậy với mọi n thì 2n-1 không là số chính phương
<=> x2+4x+4=41-3y2
<=> (x+2)2=41-3y2
Vì x-2 >= 0 nên 41-3y2 cũng phải >= 0
y=0;+-1;+-2;+-3 (+- xin hiểu là cộng trừ )
Tìm x tương ứng với y...
\(x^2+4x-37+3y^2=0.\)
\(xy\left(2+4-3\right)=37\)
\(xy3=37\)
\(xy=\frac{37}{3}\)
tâm như là thế
Đặt \(\sqrt{x}=a\) , a \(\ge0\)
a , Khi đó biểu thức trở thành :
Q = \(\frac{2a-9}{a^2-5a+6}-\frac{a+3}{a-2}-\frac{2a+1}{3-a}\)
Đến đây làm như lớp 8 thôi
a) ĐK: \(x-9\ne0\Leftrightarrow\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)\ne0\)
Vì \(\sqrt{x}\ge0\Rightarrow\sqrt{x}+3>0\)
Nên \(\sqrt{x}-3\ne0\Leftrightarrow x\ne9\)
b) \(P=\left[\frac{2\sqrt{x}\left(\sqrt{x}-3\right)+\sqrt{x}\left(\sqrt{x}+3\right)-\left(3x+3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\right]:\left(\frac{2\sqrt{x}-2-\left(\sqrt{x}-3\right)}{\sqrt{x}-3}\right)\)
\(=\left[\frac{2x-6\sqrt{x}+x+3\sqrt{x}-3x-3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\right]:\left(\frac{2\sqrt{x}-2-\sqrt{x}+3}{\sqrt{x}-3}\right)\)
\(=\left[\frac{-3\sqrt{x}-3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\right]\left(\frac{\sqrt{x}-3}{\sqrt{x}+1}\right)\)
\(=\left(\frac{-3\left(\sqrt{x}+1\right)}{\sqrt{x}+3}\right)\left(\frac{1}{\sqrt{x}+1}\right)\)
\(=\frac{-3}{\sqrt{x}+3}\)
c) Ta có: \(\sqrt{x}+3\ge3\)
\(\Rightarrow\frac{3}{\sqrt{x}+3}\le\frac{3}{3}=1\)
\(\Rightarrow\frac{-3}{\sqrt{x}+3}\ge-1\)
Dấu "=" xảy ra khi \(x=0\)
Vậy \(P_{min}=-1\) khi \(x=0\)
d) \(\frac{-3}{\sqrt{x}+3}< \frac{-1}{3}\)
\(\Leftrightarrow-\left(\sqrt{x}+3\right)< -9\)
\(\Leftrightarrow-\sqrt{x}< -6\)
\(\Leftrightarrow\sqrt{x}>6\)
\(\Leftrightarrow x>36\)
e) Thế \(x=3-2\sqrt{2}\) vào P ta được:
\(\frac{-3}{\sqrt{3-2\sqrt{2}}+3}=\frac{-3}{\sqrt{2}-1+3}=\frac{-3}{\sqrt{2}+2}=\frac{-3\left(\sqrt{2}-2\right)}{\left(\sqrt{2}+2\right)\left(\sqrt{2}-2\right)}=\frac{6-3\sqrt{2}}{-2}=\frac{3\sqrt{2}-6}{2}\)
f) \(P=\frac{-3}{\sqrt{x}+3}=-2\Leftrightarrow\sqrt{x}+3=6\Leftrightarrow\sqrt{x}=3\Leftrightarrow x=9\)
Do góc <DAB = <CBD =90 độ và <ABD = < BDC (do AB//CD)
-> Tam giác ADB và BCD đồng dạng
=> AD/BC = DB/CD <-> AD.CD=BC.DB <-> BC.DB = 12.25 =300 (1)
Mặt khác do tam giác DBC vuông tại B nên theo định lý Pitago :
BD^2+BC^2=CD^2
hay BC^2+BD^2 =625 (2)
Từ (1) và (2) ta giải hệ thì có BC, BD:
BD^2+ (300/BD)^2=625 -> BD^4 - 625 BD^2 +900 = 0 -> BD^2 = (625+can( 387025))/2 ( loại nghiệm còn lại do BD là cạnh huyền của tam giác vuông ABD nên BD^2 > AD^2 =144)
-> BD = can( (625+can( 387025))/2 )
-> BC = 3000/BD
Do góc <DAB = <CBD =90 độ và <ABD = < BDC (do AB//CD)
-> Tam giác ADB và BCD đồng dạng
=> AD/BC = DB/CD <-> AD.CD=BC.DB <-> BC.DB = 12.25 =300 (1)
Mặt khác do tam giác DBC vuông tại B nên theo định lý Pitago :
BD^2+BC^2=CD^2
hay BC^2+BD^2 =625 (2)
Từ (1) và (2) ta giải hệ thì có BC, BD:
BD^2+ (300/BD)^2=625 -> BD^4 - 625 BD^2 +900 = 0 -> BD^2 = (625+can( 387025))/2 ( loại nghiệm còn lại do BD là cạnh huyền của tam giác vuông ABD nên BD^2 > AD^2 =144)
-> BD = can( (625+can( 387025))/2 )
-> BC = 3000/BD
~~~~~~~~~~~ai đi ngang qua nhớ để lại k ~~~~~~~~~~~~~
~~~~~~~~~~~~ Chúc bạn sớm kiếm được nhiều điểm hỏi đáp ~~~~~~~~~~~~~~~~~~~
~~~~~~~~~~~ Và chúc các bạn trả lời câu hỏi này kiếm được nhiều k hơn ~~~~~~~~~~~~