CMR: \(\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{225}}< 28\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1 . \(\sqrt{x^4-2x^2+1}=x-1\)
<=> \(\sqrt{\left(x^2-1\right)^2}=x-1\)
<=> \(x^2-1=x-1\)
<=> \(x^2-x=0\)(vậy pt vô nghiệm)
1,\(\sqrt{\left(x^2-1\right)^2}=x-1\)
<=>\(x^2-x=0\)
<=>\(\orbr{\begin{cases}x1=0\\x2=1\end{cases}}\)
1,\(\sqrt{\left(x^2+4\right)}=5-\sqrt{\left(x^2+10\right)}\)
<=>\(x^2+4=25-10\sqrt{x^2+10}+x^2+10\)
<=>x^2 = -0.39 vô lý => vô nhiệm
Chứng minh điều ngược lại đúng tức là. Cho a,b,c>0 thỏa \(b+c=2a\) thì \(\sqrt{b+1}+\sqrt{c+1}\le2\sqrt{a+1}\)
Áp dụng BĐT Cauchy-Schwarz ta có:
\(VT=\left(\sqrt{b+1}+\sqrt{c+1}\right)^2\)
\(\le\left(1+1\right)\left(b+1+c+1\right)\)
\(=2\left(b+c+2\right)\le4\left(a+1\right)=VP\)
\(\Rightarrow\left(\sqrt{b+1}+\sqrt{1+c}\right)^2\le4\left(a+1\right)\)
\(\Rightarrow\sqrt{b+1}+\sqrt{1+c}\le\sqrt{4\left(a+1\right)}=2\sqrt{a+1}\)
BĐT cuối đúng hay ta có ĐPCM
Chứng minh điều ngược lại đúng, tức là :Cho a,b,c>0 thỏa \(b+c=2a\) thì \(\sqrt{b+1}+\sqrt{c+1}\le2\sqrt{a+1}\)
Áp dụng BĐT Cauchy-Schwarz ta có:
\(VT^2=\left(\sqrt{b+1}+\sqrt{c+1}\right)^2\)
\(\le\left(1+1\right)\left(b+1+c+1\right)\)
\(=2\left(b+c+2\right)=2\left(2a+2\right)\)
\(=4\left(a+1\right)=2^2\sqrt{\left(a+1\right)^2}=VP^2\)
Vì \(VT^2\le VP^2\Rightarrow VT\le VP\)
BĐT kia đúng nên ta có ĐPCM
ta có BH+HC=3+4=7cm\(AB^2=BH.BC=3.7=21\Rightarrow AB\approx4,6\)
\(AC^2=HC.BC=4.7=28cm\Rightarrow AC\approx5,3\)
\(\frac{1}{\sqrt{2}}=\frac{2}{2\sqrt{2}}< \frac{2}{\sqrt{2}+\sqrt{1}}=\frac{2\left(\sqrt{2}-1\right)}{\left(\sqrt{2}+1\right)\left(\sqrt{2}-1\right)}=2\left(\sqrt{2}-1\right)\)
\(\frac{1}{\sqrt{3}}=\frac{2}{2\sqrt{3}}< \frac{2}{\sqrt{3}+\sqrt{2}}=\frac{2\left(\sqrt{3}-\sqrt{2}\right)}{\left(\sqrt{3}+\sqrt{2}\right)\left(\sqrt{3}-\sqrt{2}\right)}=2\left(\sqrt{3}-\sqrt{2}\right)\)
.
.
.
\(\frac{1}{\sqrt{225}}=\frac{2}{2\sqrt{225}}< \frac{2}{\sqrt{225}+\sqrt{224}}=\frac{2\left(\sqrt{225}-\sqrt{224}\right)}{\left(\sqrt{225}+\sqrt{224}\right)\left(\sqrt{225}-\sqrt{224}\right)}\)\(=2\left(\sqrt{225}-\sqrt{224}\right)\)
\(\Rightarrow\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{225}}< 2\left(\sqrt{2}-1+\sqrt{3}-\sqrt{2}+...+\sqrt{225}-\sqrt{224}\right)\)
\(\Rightarrow\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{225}}< 2\left(\sqrt{225}-1\right)=2\left(15-1\right)=28\)