K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 6 2018

1) ta có \(\left(x+y\right)^2=x^2+2xy+y^2.\)

                                \(=\left(x^2+y^2\right)+2xy\)

                                \(=20+2.8\)(theo giả thiết x^2+y^2=20 , xy=8)

                                \(=36\)

Vậy với x^2+y^2=20, xy=8 thì (x+y)^2=36

2) \(M=\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)

 \(\Rightarrow3M=3\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)

  \(\Leftrightarrow3M=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)

 \(\Leftrightarrow3M=\left[\left(2^2\right)^2-1^2\right]\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)

\(\Leftrightarrow3M=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)

 \(\Leftrightarrow3M=\left[\left(2^4\right)^2-1^2\right]\left(2^8+1\right)\left(2^{16}+1\right)\)

\(\Leftrightarrow3M=\left(2^8-1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)

\(\Leftrightarrow3M=\left[\left(2^8\right)^2-1^2\right]\left(2^{16}+1\right)\)

\(\Leftrightarrow3M=\left(2^{16}-1\right)\left(2^{16}+1\right)\)

\(\Leftrightarrow3M=\left(2^{16}\right)^2-1^2\)

\(\Leftrightarrow3M=2^{32}-1\)

\(\Rightarrow M=\frac{2^{32}-1}{3}\)

RÚT GỌN BIỂU THỨC N BẠN LÀM TƯƠNG TỰ NHA 

\(N=16\left(7^2+1\right)\left(7^4+1\right)\left(7^8+1\right)\left(7^{16}+1\right)\)

 \(\Rightarrow3N=48\left(7^2+1\right)\left(7^4+1\right)\left(7^8+1\right)\left(7^{16}+1\right)\)

\(\Leftrightarrow3N=\left(7^2-1\right)\left(7^2+1\right)\left(7^4+1\right)\left(7^8+1\right)\left(7^{16}+1\right)\)

\(...\)

\(...\)

Kết quả rút gọn \(N=\frac{7^{32}-1}{3}\)

30 tháng 6 2018

\(A=x^2-6x+11\)

\(A=\left(x^2-6x+9\right)+2\)

\(A=\left(x-3\right)^2+2\ge2\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(\left(x-3\right)^2=0\)

\(\Leftrightarrow\)\(x-3=0\)

\(\Leftrightarrow\)\(x=3\)

Vậy GTNN của \(A\) là \(2\) khi \(x=3\)

\(B=x^2-20x+101\)

\(B=\left(x^2-20x+100\right)+1\)

\(B=\left(x-10\right)^2+1\ge1\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(\left(x-10\right)^2=0\)

\(\Leftrightarrow\)\(x-10=0\)

\(\Leftrightarrow\)\(x=10\)

Vậy GTNN của \(B\) là \(1\) khi \(x=10\)

Chúc bạn học tốt ~ 

30 tháng 6 2018

\(A=x^2-6x+11\)

\(A=\left(x^2-6x+9\right)+2\)

\(A=\left(x-3\right)^2+2\)

Mà  \(\left(x-3\right)^2\ge0\)

\(\Rightarrow A\ge2\)

Dấu "=" xảy ra khi :  \(x-3=0\Leftrightarrow x=3\)

Vậy  \(A_{Min}=2\Leftrightarrow x=3\)

b) \(B=x^2-20x+101\)

\(B=\left(x^2-20x+100\right)+1\)

\(B=\left(x-10\right)^2+1\)

Mà  \(\left(x-10\right)^2\ge0\)

\(\Rightarrow B\ge1\)

Dấu "=" xảy ra khi :  \(x-10=0\Leftrightarrow x=10\)

Vậy  \(B_{Min}=1\Leftrightarrow x=10\)

c)  \(C=x^2-4xy+5y^2+10x-22y+28\)

\(C=\left(x^2-4xy+4y^2\right)+y^2+10x-22y+28\)

\(C=\left[\left(x-2y\right)^2+2\left(x-2y\right).5+25\right]+\)\(\left(y^2-2y+1\right)+2\)

\(C=\left(x-2y+5\right)^2+\left(y-1\right)^2+2\)

Mà  \(\left(x-2y+5\right)^2\ge0\)

      \(\left(y-1\right)^2\ge0\)

\(\Rightarrow C\ge2\)

Dấu "=" xảy ra khi : 

\(\hept{\begin{cases}x-2y+5=0\\y-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-3\\y=1\end{cases}}\)

Vây  \(C_{Min}=2\Leftrightarrow\left(x;y\right)=\left(-3;1\right)\)

30 tháng 6 2018

Ta có : 

\(\left(3x+2\right)\left(9x^2-6x+4\right)-\left(x-3\right)\left(x+3\right)\)

\(=\)\(\left(3x+2\right)\left[\left(3x\right)^2-3x.2+2^2\right]-\left(x^2-3^2\right)\)

\(=\)\(\left(3x\right)^3+2^3-x^2-3^2\)

\(=\)\(27x^3-x^2+8-9\)

\(=\)\(27x^3-x^2-1\)

Chúc bạn học tốt ~ 

30 tháng 6 2018

x2(3x+2)

= x23x+2x2

= 3x3+2x2

đề thiếu hay sai j đó

30 tháng 6 2018

\(\left(x-3\right)^2+\left(x+2\right)^2-2x^2=3\)

\(x^2-6x+9+x^2+4x+4-2x^2=3\)

\(-2x+13=3\)

\(-2x=3-13\)

\(-2x=-10\)

\(x=\frac{-10}{-2}\)

\(x=5\)

Vậy \(x=5\)

30 tháng 6 2018

\(x^2-2x+2\)

\(=\left(x^2-2x+1\right)+1\)

\(=\left(x-1\right)^2+1\)

30 tháng 6 2018

x^3+ y^3+ 3xy

=(x+y)(x^2 -xy + y^2 ) + 3xy
=x^2  -xy + y^2 + 3xy

=x^2 + 2xy + y^2

=(x+y)^2 =1

=> x^3+ y^3+ 3xy=1

1 tháng 7 2018

còn câu b ai giúp m vs

30 tháng 6 2018

\(x^4+4x^3+12\)

\(=\left(x^2\right)^2+2.2x^3+\left(2x\right)^2-4x^2+12\)

\(=\left(x^2+2x\right)^2-4x^2+12\)

Có \(\left(x^2+2x\right)^2-4x^2+12>0\)

=> Vô nghiệm