Cho . Chứng tỏ a và b đối nh
. Chứng tỏ a = b = c
. Chứng tỏ a = b = c
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(4\left(18-5x\right)-12\left(3x-7\right)=15\left(2x-16\right)-6\left(x+14\right)\)
\(\Rightarrow72-20x-36x-84=30x-240-6x+84\)
\(\Rightarrow\left(72-84\right)-\left(20x+36x\right)=\left(30x-6x\right)-240+84\)
\(\Rightarrow-12-56=24x-56x\)
\(\Rightarrow-12+156=24x+56x\)
\(\Rightarrow144=80x\)
\(\Rightarrow x=144:80\)
\(\Rightarrow x=\frac{9}{5}\)
b) \(5\left(3x+5\right)-4\left(2x-3\right)=5x+3\left(2x+12\right)+1\)
\(\Rightarrow15x+25-8x+12=5x+6x+36+1\)
\(\Rightarrow15x+25-8x+12-5x-6x-36-1=0\)
\(\Rightarrow-4x=0\)
\(\Rightarrow-4.0\)
\(\Rightarrow x=0\)
Đặt \(A=2a^2b^2+2a^2c^2+2b^2c^2-a^4-b^4-c^4\)
\(A=-\left(a^4+b^4+c^4-2\left(ab\right)^2-2\left(bc\right)^2-2\left(ca\right)^2\right)\)
\(A=-\left(a^4+b^4+c^4-2\left(ab\right)^2-2\left(bc\right)^2+2\left(ca\right)^2-4\left(ca\right)^2\right)\)
Áp dụng hàng đẳng thức \(\left(a^2-b^2+c^2\right)=a^4+b^4+c^4-2\left(ab\right)^2-2\left(bc\right)^2+2\left(ca\right)^2\):
\(A=-\left[\left(a^2-b^2+c^2\right)^2-4\left(ca\right)^2\right]\)
\(A=-\left(a^2-b^2+c^2-2ca\right)\left(a^2-b^2+c^2+2ca\right)\)
2222222222222a+257222222222222222222222222222222222222222222222222222222222222222222222222222222222222222a=?
\(\left(y+\frac{1}{y}\right)^2=y^2+2.y.\frac{1}{y}+\left(\frac{1}{y}\right)^2=y^2+2+\frac{1}{y^2}\)
Ta có:\(\left(a+b\right)^2-4ab=a^2+2ab+b^2-4ab=a^2-2ab+b^2=\left(a-b\right)^2\)
\(\Rightarrow\left(a-b\right)^2=\left(a+b\right)^2-4ab=5^2-4.3=25-12=13\)
\(\Rightarrow a-b=\pm\sqrt{13}\)
\(\text{5.(3x + 5) - 4.(2x - 3) = 5x + 3.(2x - 12) + 1}\)
<=> 15x + 25 - 8x + 12 = 5x + 6x - 36 + 1
<=> 15x - 8x - 5x - 6x + 25 + 12 + 36 - 1 = 0
<=> - 4x + 72 = 0
<=> 4x = 72
<=> x = 18