Tìm x, biết
4/7 + 3/7 x = 1/2
17/6 - ( x + 7/6 ) = 7/4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(\dfrac{1}{2}-\dfrac{1}{3}\right)-\left(\dfrac{5}{3}-\dfrac{3}{2}\right)+\left(\dfrac{7}{3}-\dfrac{5}{2}\right)\\ =\dfrac{1}{2}-\dfrac{1}{3}-\dfrac{5}{3}+\dfrac{3}{2}+\dfrac{7}{3}-\dfrac{5}{2}\\ =\left(\dfrac{1}{2}+\dfrac{3}{2}-\dfrac{5}{2}\right)+\left(-\dfrac{1}{3}-\dfrac{5}{3}+\dfrac{7}{3}\right)\\ =-\dfrac{1}{2}+\dfrac{1}{3}\\ =-\dfrac{1}{6}\)
Tổng số gà vịt còn lại sau khi bán là:
600 - 33 - 7 = 560 (con)
Tổng số phần bằng nhau là:
2 + 5 = 7 (phần)
Số gà còn lại sau khi bán là:
560 : 7 x 5 = 400 (con)
Số gà trước khi bán là:
400 + 33 = 433 (con)
Số vịt trước khi bán là:
600 - 433 = 167 (con)
ĐS: ...
\(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{45}\\\dfrac{y}{2}-\dfrac{x}{2}=28\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{45}\\\dfrac{y}{2}=\dfrac{x}{2}+28\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{x+56}=\dfrac{1}{45}\\y=x+56\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}45\left(x+56\right)+45x=x\left(x+56\right)\\y=x+56\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}90x+2520=x^2+56x\\y=x+56\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x^2-34x-2520=0\\y=x+56\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x=70\\x=-36\end{matrix}\right.\\y=x+56\end{matrix}\right.\)
Khi x = 70 => y = 70 + 56 = 126
Khi x = -36 => y = (-36) + 56 = 20
\(A=\left(4x^2-2x-1\right)-\left(x^2-4x+2\right)\\ =4x^2-2x-1-x^2+4x-2\\ =3x^2+2x-3\)
Thay `x=-1/2` vào A ta có:
\(A=3\cdot\left(-\dfrac{1}{2}\right)^2+2\cdot-\dfrac{1}{2}-3=\dfrac{3}{8}-1-3=\dfrac{3}{8}-4=-\dfrac{29}{4}\)
a)
\(\dfrac{-7}{20}\) = \(\dfrac{4}{5}\) + \(\left(\dfrac{-23}{20}\right)\)
b)
\(\dfrac{-7}{20}\) = \(\dfrac{-1}{5}\) + \(\left(\dfrac{-3}{20}\right)\)
Do x và y là hai đại lượng tỉ lệ nghịch nên:
\(a=xy=2\cdot\left(-15\right)=-30\)
Sửa đề: B là giao điểm có hoành độ dương của (P) và (d)
Phương trình hoành độ giao điểm của (P) và (d):
−x² = x − 2
x² + x − 2 = 0
x² − x + 2x − 2 = 0
(x² − x) + (2x − 2) = 0
x(x − 1) + 2(x− 1) = 0
(x − 1)(x + 2) = 0
x − 1 = 0 hoặc x + 2 = 0
*) x − 1 = 0
x = 1
y = −1² = −1
B(1; −1)
*) x + 2 = 0
x = −2
y = −(−2)² = −4
A(−2; −4)
* Phương trình đường thẳng OB:
Gọi (d'): y = ax + b là phương trình đường thẳng OB
Do (d') đi qua O nên b = 0
=> (d'): y = ax
Do (d') đi qua B(1; −1) nên:
a = −1
=> (d'): y = −x
Gọi (d''): y = a'x + b' là đường thẳng đi qua A(−2; −4)
Do (d'') // (d') nên a' = −1
=> (d''): y = −x + b
Do (d'') đi qua A(−2; −4) nên:
−(−2) + b = −4
b = −4 − 2
b = −6
=> (d''): y = −x − 6
\(\dfrac{4}{7}+\dfrac{3}{7}x=\dfrac{1}{2}\\ \dfrac{3}{7}x=\dfrac{1}{2}-\dfrac{4}{7}\\ \dfrac{3}{7}x=-\dfrac{1}{14}\\ x=-\dfrac{1}{14}:\dfrac{3}{7}\\ x=-\dfrac{1}{6}\)
Vậy....
\(\dfrac{17}{6}-\left(x+\dfrac{7}{6}\right)=\dfrac{7}{4}\\x+\dfrac{7}{6}=\dfrac{17}{6}-\dfrac{7}{4}\\ x+\dfrac{7}{6}=\dfrac{13}{12}\\ x=\dfrac{13}{12}-\dfrac{7}{6}\\ x=-\dfrac{1}{12} \)
Vậy....
\(\dfrac{4}{7}+\dfrac{3}{7}x=\dfrac{1}{2}\\ \Rightarrow\dfrac{3}{7}x=\dfrac{1}{2}-\dfrac{4}{7}\\ \Rightarrow\dfrac{3}{7}x=-\dfrac{1}{14}\\ \Rightarrow x=-\dfrac{1}{14}:\dfrac{3}{7}\\ \Rightarrow x=-\dfrac{1}{6}\)
___________
\(\dfrac{17}{6}-\left(x+\dfrac{7}{6}\right)=\dfrac{7}{4}\\ \Rightarrow\dfrac{17}{6}-x-\dfrac{7}{6}=\dfrac{7}{4}\\ \Rightarrow\dfrac{5}{3}-x=\dfrac{7}{4}\\ \Rightarrow x=\dfrac{5}{3}-\dfrac{7}{4}\\ \Rightarrow x=-\dfrac{1}{12}\)