Tìm GTNN của biểu thức
\(C=x^2-2x+y^2-4y+7\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x^2+x+1\right).\left(x^2+x+2\right)-12=0.\)(1)
Đặt \(t=x^2+x+1\left(t>0\right)\)
Khi đó :
(1) \(\Leftrightarrow t.\left(t+1\right)-12=0\)
\(\Leftrightarrow t^2+t-12=0\)
\(\Leftrightarrow t^2+t=12\)
\(\Leftrightarrow t=3\)
Khi \(t=3\Leftrightarrow x^2+x+1=3\Leftrightarrow\orbr{\begin{cases}x=1\\x=-2\end{cases}}\)
Ta có a,b,c là 3 số tụ nhiên liên tiếp
\(\Rightarrow\)a=k+1;b=k+2;c=k+3
\(\Rightarrow a^3+b^3+c^3=\left(k+1\right)^3+\left(k+2\right)^3+\left(k+3\right)^3\)
\(=3k^3+18k^2+36k+36\)(saau khi đã rút gọn-dung HĐT số 4)
Phần sau bạn tự làm tiếp
\(\left(x^2+x-1\right)^2+4x^2+4x-1\)
\(=\left(x^2+x-1\right)^2+4\left(x^2+x-1\right)+3\)
\(=\left(x^2+x-1\right)^2+x^2+x-1+3\left(x^2+x-1\right)+3\)
\(=\left(x^2+x-1\right)\left(x^2+x-1+1\right)+3\left(x^2+x-1+1\right)\)
\(=\left(x^2+x-1\right)\left(x^2+x\right)+3\left(x^2+x\right)\)
\(=\left(x^2+x\right)\left(x^2+x-1+3\right)\)
\(=x\left(x+1\right)\left(x^2+x+2\right)\)
Chúc bạn học tốt.
[(10x+4).(2x+1)].[(4x-2).(5x+7)] + 17 = (20x + 18x + 4)(20x + 18x - 14) + 17.
Đến đây ta đặt 20x + 18x - 5 = t, ta được: (t - 9)(t + 9) + 17 = 0 \(\Leftrightarrow\) t2 - 81 + 17 = 0
Đến đây bạn tự làm tiếp nhé!
Hạ AH và BK vuông góc với CD (H; k thuộc CD)
Dễ dàng c/m được ABKH là hình vuông => AB=KH
=> CD-AB=CD-KH=(DH+CK)
Xét tg vuông ADH có DH<AD
Xét tg vuông BCK có CK<BC
Mà AD=BC (hình thang ABCD là hình thang cân)
=> CK<AD
=> DH+CK<2AD
=> CD-AB<2AD
\(C=x^2-2x+y^2-4y+7\)
\(C=\left(x^2-2x+1\right)+\left(y^2-4y+4\right)+2\)
\(C=\left(x-1\right)^2+\left(y-2\right)^2+2\ge2\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(\hept{\begin{cases}\left(x-1\right)^2=0\\\left(y-2\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x-1=0\\y-2=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=1\\y=2\end{cases}}}\)
Vậy GTNN của \(C\) là \(2\) khi \(x=1\) và \(y=2\)
Chúc bạn học tốt ~