K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 9 2018

a) \(\left(a+b+c\right)^3-a^3-b^3-c^3\)

\(=\left[\left(a+b\right)+c\right]^3-a^3-b^3-c^3\)

\(=\left(a+b\right)^3+c^3+3c\left(a+b\right)\left(a+b+c\right)-a^3-b^3-c^3\)

\(=3\left(a+b\right)\left(ab+ac+bc+c^2\right)\)

\(=3\left(a+b\right)\left[a\left(b+c\right)+c\left(b+c\right)\right]\)

\(=3\left(a+b\right)\left(a+c\right)\left(b+c\right)\)

=> ĐPCM

b) \(a^3+b^3+c^3-3abc\)

\(=\left(a+b\right)^3-3ab\left(a+b\right)^2+c^3-3abc\)

\(=\left[\left(a+b\right)^3+c^3\right]-\left(3a^2b+3abc+3ab^2\right)\)

\(=\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right).c+c^2\right]-3ab\left(a+b+c\right)\)

\(=\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right).c+c^2-3ab\right]\)

\(=\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2-3ab\right)\)

\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)\)

=> ĐPCM

P/s: Có sao sót xin bỏ qua

22 tháng 9 2018

a) \(\left(a+b+c\right)^3-a^3-b^3-c^3\)

\(=\left(a+b\right)^3+3\left(a+b\right)^2\cdot c+3\left(a+b\right)c^2+c^3\)\(-a^3-b^3-c^3\)

\(=a^3+b^3+c^3+3a^2b+3ab^2+3\left(a^2+2ab+b^2\right)c\)\(+3ac^2+3bc^2-a^3-b^3-c^3\)

\(=3a^2b+3ab^2+3a^2c+6abc+3b^2c+3ac^2+3bc^2\)

\(=\left(3abc+3a^2c+3b^2c+3bc^2\right)\)\(+\left(3a^2b+3a^2c+3ab^2+3abc\right)\)

\(=c\left(3ab+3ac+3b^2+3bc\right)\)\(+a\left(3ab+3ac+3b^2+3bc\right)\)

\(=\left(a+c\right)\left[\left(3ab+3b^2\right)+\left(3ac+3bc\right)\right]\)

\(=\left(a+c\right)\left[3b\left(a+b\right)+3c\left(a+b\right)\right]\)

\(=3\left(a+c\right)\left(a+b\right)\left(b+c\right)\)

b) \(a^3+b^3+c^3-3abc\)

\(=\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc\)( do \(a^3+b^3=\left(a+b\right)^3-3ab\left(a+b\right)\))

\(=\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]\)\(-3ab\left(a+b+c\right)\)

\(=\left(a+b+c\right)\left(a^2+b^2+c^2+2ab-ab-ac\right)\)\(-3ab\left(a+b+c\right)\)

\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)\)

22 tháng 9 2018

(x + y + z)2 - 2(x + y + z)(x + y) + (x + y)2

= (x + y + z + x +y)2

= (2x + 2y + z)2

Chúc bạn học tốt !

22 tháng 9 2018

\(\left(x+y+z\right)^2-2\left(x+y+z\right)\left(x+y\right)+\left(x+y\right)^2\)

\(=\left[\left(x+y+z\right)-\left(x+y\right)\right]^2\)

\(=\left(x+y+z-x-y\right)^2\)

\(=z^2\)

Áp dụng BĐT: \(\left(a-b\right)^2=a^2-2ab+b^2\)

22 tháng 9 2018

\(x^3-5x^2-14x\)

\(=x^3+2x^2-7x^2-14x\)

\(=x^2\left(x+2\right)-7x\left(x+2\right)\)

\(=\left(x+2\right)\left(x^2-7x\right)\)

\(=x\left(x+2\right)\left(x-7\right)\)

\(x^3-7x-6\)

\(=x^3+x^2-x^2-x-6x-6\)

\(=x^2\left(x+1\right)-x\left(x+1\right)-6\left(x+1\right)\)

\(=\left(x+1\right)\left(x^2-x-6\right)\)

\(=\left(x+1\right)\left(x^2+2x-3x-6\right)\)

\(=\left(x+1\right)\left[x\left(x+2\right)-3\left(x+2\right)\right]\)

\(=\left(x+1\right)\left(x+2\right)\left(x-3\right)\)

\(x^3-19x-30\)

\(=x^3-5x^2+5x^2-25x+6x-30\)

\(=x^2\left(x-5\right)+5x\left(x-5\right)+6\left(x-5\right)\)

\(=\left(x-5\right)\left(x^2+5x+6\right)\)

\(=\left(x-5\right)\left(x^2+2x+3x+6\right)\)

\(=\left(x-5\right)\left[x\left(x+2\right)+3\left(x+2\right)\right]\)

\(=\left(x-5\right)\left(x+3\right)\left(x+2\right)\)

22 tháng 9 2018

      \(\left(4x-5\right)^2\left(2x-3\right)\left(x-1\right)=9\)

\(\Leftrightarrow\left(4x-5\right)^2\left(2x-3\right).2.\left(x-1\right).4=9.2.4\)

\(\Leftrightarrow\left(4x-5\right)^2\left(4x-6\right)\left(4x-4\right)=72\)(1)

Đặt \(4x-5=a\)

Khi đó (1) trở thành: 

      \(a^2\left(a-1\right)\left(a+1\right)=72\)

\(\Leftrightarrow a^2\left(a^2-1\right)=72\)    

\(\Leftrightarrow a^4-a^2-72=0\)

\(\Leftrightarrow a^4-9a^2+8a^2-72=0\)

\(\Leftrightarrow a^2\left(a^2-9\right)+8\left(a^2-9\right)=0\)

\(\Leftrightarrow\left(a^2-9\right)\left(a^2+8\right)=0\)

\(\Leftrightarrow a^2-9=0\) (vì \(a^2+8>0\forall a\) )

\(\Leftrightarrow\orbr{\begin{cases}a=3\\a=-3\end{cases}}\)

- Với \(a=3\Rightarrow4x-5=3\Rightarrow x=2\)

-Với \(a=-3\Rightarrow4x-5=-3\Rightarrow x=\frac{1}{2}\)

Vậy \(x=2,x=\frac{1}{2}\)

Chúc bạn học tốt.

22 tháng 9 2018

a, \(A=\left(3x-2\right)^2+\left(3x+2\right)^2+2\left(9x^2-4\right)\)

      \(=\left(3x-2\right)^2+\left(3x+2\right)^2+2\left(3x-2\right)\left(3x+2\right)\)

      \(=\left(3x-2+3x+2\right)^2\)

      \(=36x^2=36.\left(-\frac{1}{3}\right)^2=4\)

b,  \(B=\left(x+y-7\right)^2-2\left(x+y-7\right)\left(y-6\right)+\left(y-6\right)^2\)

        \(=\left[\left(x+y-7\right)-\left(y-6\right)\right]^2\)

        \(=\left(x-1\right)^2\)

        \(=\left(101-1\right)^2=10000\)

c, \(C=4x^2-20x+27\)

       \(=\left(2x\right)^2-2.2x.5+5^2+2\)

       \(=\left(2x-5\right)^2+2\)

       \(=\left(52,5.2-5\right)^2+2\)

        \(=100^2+2=10002\)

Bài này dễ mà chỉ dùng hằng đẳng thức thôi. Chúc bạn học tốt.

22 tháng 9 2018

\(x^2-x+\frac{1}{4}=0\)

\(x^2-2\cdot x\cdot\frac{1}{2}+\left(\frac{1}{2}\right)^2=0\)

\(\left(x-\frac{1}{2}\right)^2=0\)

\(\Rightarrow x-\frac{1}{2}=0\)

\(\Rightarrow x=\frac{1}{2}\)

22 tháng 9 2018

\(\left(5x-1\right)^2-\left(5x-4\right)\left(5x+4\right)=7\)

\(25x^2-10x+1-25x^2+16=7\)

\(17-10x=7\)

\(10x=10\)

\(x=1\)

22 tháng 9 2018

Đặt \(b-c=x,c-a=y,a-b=z\)

\(\Rightarrow x+y+z=0\Rightarrow x^3+y^3+z^3=3xyz\)

\(\Rightarrow\left(b-c\right)^3+\left(c-a\right)^3+\left(a-b\right)^3=3\left(b-c\right)\left(c-a\right)\left(a-b\right)\)(1)

Ta có: 

    : \(a^2\left(b-c\right)+b^2\left(c-a\right)+c^2\left(a-b\right)\)

\(=a^2\left(b-c\right)+b^2\left(c-b+b-a\right)+c^2\left(a-b\right)\)

\(=a^2\left(b-c\right)+b^2\left(c-b\right)+b^2\left(b-a\right)+c^2\left(a-b\right)\)

\(=\left(b-c\right)\left(a^2-b^2\right)+\left(a-b\right)\left(c^2-b^2\right)\)

\(=\left(b-c\right)\left(a-b\right)\left(a+b\right)+\left(a-b\right)\left(c-b\right)\left(c+b\right)\)

\(=\left(b-c\right)\left(a-b\right)\left(a+b-c-b\right)\)

\(=\left(b-c\right)\left(a-b\right)\left(a-c\right)\)(2)

Từ (1) và (2) giá trị biểu thức cần tìm là -3.

Chúc bạn học tốt