cho đường tròn (O;R),A và B thuộc đường tronf O sao cho góc AOB=90 độ;gọi M là trung điểm AB
a) Chứng minh rằng : OM vuông góc AB
b) tính AB,OM theo R
giải giúp mik ko cần vẽ hình cx được
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{\left(\sqrt{a}\right)^3-\left(\sqrt{b}\right)^3}{\sqrt{a}-\sqrt{b}}=\frac{\left(\sqrt{a}-\sqrt{b}\right)\left(a+\sqrt{ab}+b\right)}{\sqrt{a}-\sqrt{b}}\\ \)
\(a+\sqrt{ab}+b\)
Ta có:
\(\frac{a\sqrt{a}-b\sqrt{b}}{\sqrt{a}-\sqrt{b}}\)
\(\Leftrightarrow\frac{\sqrt{a}^3-\sqrt{b}^3}{\sqrt{a}-\sqrt{b}}\)
\(\Leftrightarrow\frac{\left(\sqrt{a}-\sqrt{b}\right)\left(a+\sqrt{ab}+b\right)}{\sqrt{a}-\sqrt{b}}\)
\(\Rightarrow a+\sqrt{ab}+b\)
A B C
Tam giác ABC vuông tại A nên: cotB+ cotC=\(\frac{AB}{AC}+\frac{AC}{AB}\ge2\sqrt{\frac{AB.AC}{AC.AB}}=2\)(BĐT Cauchy)
Dấu ''='' xảy ra khi tam giác ABC vuông cân tại A
easy
\(VT\ge\frac{8}{\left(a+b\right)^2+\left(a+b\right)^2c}+\frac{8}{\left(b+c\right)^2+\left(b+c\right)^2c}+\frac{8}{\left(c+a\right)^2+\left(c+a\right)^2b}+\frac{\left(a+b\right)^2}{4}+\frac{\left(b+c\right)^2}{4}+\frac{\left(c+a\right)^2}{4}\)
\(=\frac{8}{\left(a+b\right)^2\left(c+1\right)}+\frac{8}{\left(b+c\right)^2\left(a+1\right)}+\frac{8}{\left(c+a\right)^2\left(b+1\right)}+\frac{\left(a+b\right)^2}{4}+\frac{\left(b+c\right)^2}{4}+\frac{\left(c+a\right)^2}{4}\)
đến đây ghép rồi dùng cô si
bài này trong đề thi của tỉnh nào đó ở nước nào đó ở hành tinh nào đó năm 2016-2017
Đặt P = 1/a³(b + c) + 1/b³(a + c) +1/c³(a + b)
= bc/a²(b + c) + ac/b²(a + c) + ab/c²(a + b) ------- (do abc = 1)
= 1 / a²[(1/c) + (1/b)] + 1 / b²[(1/c) + (1/a)] + 1 / c²[(1/b) + (1/a)]
= (1/a²) / [(1/c) + (1/b)] + (1/b²) / [(1/c) + (1/a)] + (1/c²) / [(1/b) + (1/a)]
Đặt 1/a = x, 1/b = y, 1/c = z thì xyz = 1
Và khi đó:
P = x²/(y + z) + y²/(z + x) + z²/(x + y)
Sử dụng BĐT Cauchy:
♠ x²/(y + z) + (y + z)/4 ≥ x
♠ y²/(z + x) + (z + x)/4 ≥ y
♠ z²/(x + y) + (x + y)/4 ≥ z
Cộng vế 3 BĐT trên ta được
P + (x + y + z)/2 ≥ x + y + z
Hay:
P ≥ (x + y + z)/2
Lại theo Cauchy thì x + y + z ≥ 3.³√(xyz) = 3
Nên P ≥ 3/2 (và ta được đpcm)
https://olm.vn/hoi-dap/question/1036432.html
vào đây xem nhé,cách ngắn hơn
=(49-20căn6)(5+2căn6)căn(5+2căn6)/(9c...
Đầu tiên bạn nhân cả tử và mẫu với 9căn3+11căn2 , đồng thời bạn biến đổi như sau:
N=(25-2.5.2.căn6+24)(3+2.căn3.căn2+2)c... [(9căn3)^2-(11căn2)^2] =(5-2căn6)^2 . (căn3+căn2)^2 . căn(căn3+căn2)^2 . (9căn3+11căn2) /(243-242)
=(căn3-căn2)^4 . (căn3+căn2)^3 . (9căn3+11căn2) =(căn3-căn2)(9căn3+11căn2)
=27+11căn6-9căn6-22=5+2căn6.
Dự đoán \(MinA=2\)khi \(x=y=z=\frac{1}{2}\)và \(MaxA=3\)khi x = y = z = 1. Ta sẽ chứng minh \(2\le\frac{x+y}{1+z}+\frac{y+z}{1+x}+\frac{z+x}{1+y}\le3\)
Đặt \(a=x+1;b=y+1;c=z+1\), khi đó ta được\(a,b,c\in\left[\frac{3}{2};2\right]\)
Bất đẳng thức cần chứng minh được viết lại là \(2\le\frac{a+b-2}{c}+\frac{b+c-2}{a}+\frac{c+a-2}{b}\le3\)
#Trước hết ta chứng minh\(2\le\frac{a+b-2}{c}+\frac{b+c-2}{a}+\frac{c+a-2}{b}\)\(\Leftrightarrow5\le\frac{a+b-2}{c}+1+\frac{b+c-2}{a}+1+\frac{c+a-2}{b}+1\)\(\Leftrightarrow5\le\left(a+b+c-2\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
Theo một đánh giá quen thuộc thì \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\)nên ta quy bất đẳng thức cần chứng minh về dạng \(\left(a+b+c-2\right)\frac{9}{a+b+c}\ge5\)
Đặt \(a+b+c=s\)thì ta cần chứng minh \(\frac{9\left(s-2\right)}{s}\ge5\Leftrightarrow s\ge\frac{9}{2}\)*đúng vì \(a+b+c\ge\frac{3}{2}.3=\frac{9}{2}\)*
Vậy bất đẳng thức bên trái được chứng minh
Đẳng thức xảy ra khi \(x=y=z=\frac{1}{2}\)
#Chứng minh \(\frac{a+b-2}{c}+\frac{b+c-2}{a}+\frac{c+a-2}{b}\le3\)
Không mất tính tổng quát, ta giả sử \(\frac{3}{2}\le a\le b\le c\le2\). Khi đó ta sẽ có\(\left(\frac{a}{b}+\frac{b}{a}\right)-\left(\frac{a}{2}+\frac{2}{a}\right)=\frac{\left(2-b\right)\left(a^2-2b\right)}{2ab}\le0\)hay \(\frac{a}{b}+\frac{b}{a}\le\frac{a}{2}+\frac{2}{a}\)
Hoàn toàn tương tự ta được \(\frac{b}{c}+\frac{c}{b}\le\frac{b}{2}+\frac{2}{b}\); \(\frac{a}{c}+\frac{c}{a}\le\frac{a}{2}+\frac{2}{a}\)
Cộng theo vế các bất đẳng thức trên ta được\(\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)+\left(\frac{a}{c}+\frac{c}{a}\right)\le a+\frac{4}{a}+\frac{b}{2}+\frac{2}{b}\)
Ta cần chứng minh\(a+\frac{4}{a}+\frac{b}{2}+\frac{2}{b}\le3+\frac{2}{a}+\frac{2}{b}+\frac{2}{c}\Leftrightarrow a+\frac{2}{a}+\frac{b}{2}\le3+\frac{2}{c}\)
Bất đẳng thức cuối cùng là một bất đẳng thức đúng vì\(\hept{\begin{cases}a+\frac{2}{a}-3=\frac{\left(a-1\right)\left(a-2\right)}{a}\le0\Leftrightarrow a+\frac{2}{a}\le3\\\frac{b}{2}\le1\le\frac{2}{c}\end{cases}}\)
Vậy bất đẳng thức bên phải được chứng minh
Đẳng thức xảy ra khi a = b = c = 1
Làm tương tự ** chứng minh 5 điểm A, B, H , O, C cùng thuộc một đường tròn
+OB vuông góc với AB→góc ABO =90 độ→B thuộc đường tròn đường kính AO (1)
+CMTT: góc ACO = 90 độ→C thuộc đường tròn đường kính AO (2)
+DH=DE →OH vuông góc với DE
→ góc OHA =90 độ → H thuộc dg` tron` dg` kính AO (3)
><Từ (1),(2),(3) cho ta: 5 điểm A, B, H , O, C cùng thuộc một đường tròn
CM: HA là tia phân giác của góc BHC
Xét Đg Tr Đg kính AO
+AB=AC (tiếp tuyến đường tròn (O) cắt nhau tại A)
→Cung AB= cung AC →^BHA=^AHC (chắn 2 cung bằng nhau) →AH là phân giác của góc BHC
CM: AB^2= AI . AH
+Gọi giao điểm của AO và BC là G
=>Ta có BG vuông góc AO
+∆ABO vuông tại B có đg/cao BG→AB^2=AG.AO
+∆vuông AGI đồng dạng ∆vuông AHO (Â chung)
→AG/AI = AH/AO→AG.AO = AI.AH = AB^2 (đpcm)
CM AE song song với CK (*)
(*)<=> ^BKC = ^BHA
+ ^BHA = 180 - HBA -BAH (Xét ∆BHA)
=180 - (180-HCA)-BCH (Xét đt đk AO)
=HCA-BCH =BCA =BKC (cùng chắn cung BC của (O) ) (đpcm)