K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 10 2017

Làm tương tự  ** chứng minh 5 điểm A, B, H , O, C cùng thuộc một đường tròn 

+OB vuông góc với AB→góc ABO =90 độ→B thuộc đường tròn đường kính AO (1) 
+CMTT: góc ACO = 90 độ→C thuộc đường tròn đường kính AO (2) 
+DH=DE →OH vuông góc với DE 
→ góc OHA =90 độ → H thuộc dg` tron` dg` kính AO (3) 
><Từ (1),(2),(3) cho ta: 5 điểm A, B, H , O, C cùng thuộc một đường tròn 

CM: HA là tia phân giác của góc BHC 
Xét Đg Tr Đg kính AO 
+AB=AC (tiếp tuyến đường tròn (O) cắt nhau tại A) 
→Cung AB= cung AC →^BHA=^AHC (chắn 2 cung bằng nhau) →AH là phân giác của góc BHC 
CM: AB^2= AI . AH 
+Gọi giao điểm của AO và BC là G 
=>Ta có BG vuông góc AO 
+∆ABO vuông tại B có đg/cao BG→AB^2=AG.AO 
+∆vuông AGI đồng dạng ∆vuông AHO (Â chung) 
→AG/AI = AH/AO→AG.AO = AI.AH = AB^2 (đpcm) 

CM AE song song với CK (*) 
(*)<=> ^BKC = ^BHA 
+ ^BHA = 180 - HBA -BAH (Xét ∆BHA) 
=180 - (180-HCA)-BCH (Xét đt đk AO) 
=HCA-BCH =BCA =BKC (cùng chắn cung BC của (O) ) (đpcm)

1 tháng 10 2017

\(\frac{\left(\sqrt{a}\right)^3-\left(\sqrt{b}\right)^3}{\sqrt{a}-\sqrt{b}}=\frac{\left(\sqrt{a}-\sqrt{b}\right)\left(a+\sqrt{ab}+b\right)}{\sqrt{a}-\sqrt{b}}\\ \)

\(a+\sqrt{ab}+b\)

Ta có:

\(\frac{a\sqrt{a}-b\sqrt{b}}{\sqrt{a}-\sqrt{b}}\)

\(\Leftrightarrow\frac{\sqrt{a}^3-\sqrt{b}^3}{\sqrt{a}-\sqrt{b}}\)

\(\Leftrightarrow\frac{\left(\sqrt{a}-\sqrt{b}\right)\left(a+\sqrt{ab}+b\right)}{\sqrt{a}-\sqrt{b}}\)

\(\Rightarrow a+\sqrt{ab}+b\)

1 tháng 10 2017

A B C

Tam giác ABC vuông tại A nên: cotB+ cotC=\(\frac{AB}{AC}+\frac{AC}{AB}\ge2\sqrt{\frac{AB.AC}{AC.AB}}=2\)(BĐT Cauchy)

Dấu ''='' xảy ra khi tam giác ABC vuông cân tại A

easy

\(VT\ge\frac{8}{\left(a+b\right)^2+\left(a+b\right)^2c}+\frac{8}{\left(b+c\right)^2+\left(b+c\right)^2c}+\frac{8}{\left(c+a\right)^2+\left(c+a\right)^2b}+\frac{\left(a+b\right)^2}{4}+\frac{\left(b+c\right)^2}{4}+\frac{\left(c+a\right)^2}{4}\)

\(=\frac{8}{\left(a+b\right)^2\left(c+1\right)}+\frac{8}{\left(b+c\right)^2\left(a+1\right)}+\frac{8}{\left(c+a\right)^2\left(b+1\right)}+\frac{\left(a+b\right)^2}{4}+\frac{\left(b+c\right)^2}{4}+\frac{\left(c+a\right)^2}{4}\)

đến đây ghép rồi dùng cô si

bài này trong đề thi của tỉnh nào đó ở nước nào đó ở hành tinh nào đó năm 2016-2017

13 tháng 4 2019

bạn làm luôn khúc sau dùm mik nhé, mik ko hiểu

1 tháng 10 2017

Đặt P = 1/a³(b + c) + 1/b³(a + c) +1/c³(a + b) 

= bc/a²(b + c) + ac/b²(a + c) + ab/c²(a + b) ------- (do abc = 1) 

= 1 / a²[(1/c) + (1/b)] + 1 / b²[(1/c) + (1/a)] + 1 / c²[(1/b) + (1/a)] 

= (1/a²) / [(1/c) + (1/b)] + (1/b²) / [(1/c) + (1/a)] + (1/c²) / [(1/b) + (1/a)] 

Đặt 1/a = x, 1/b = y, 1/c = z thì xyz = 1 

Và khi đó: 

P = x²/(y + z) + y²/(z + x) + z²/(x + y) 

Sử dụng BĐT Cauchy: 

♠ x²/(y + z) + (y + z)/4 ≥ x 

♠ y²/(z + x) + (z + x)/4 ≥ y 

♠ z²/(x + y) + (x + y)/4 ≥ z 

Cộng vế 3 BĐT trên ta được 

P + (x + y + z)/2 ≥ x + y + z 

Hay: 

P ≥ (x + y + z)/2 

Lại theo Cauchy thì x + y + z ≥ 3.³√(xyz) = 3 

Nên P ≥ 3/2 (và ta được đpcm)   

1 tháng 10 2017

https://olm.vn/hoi-dap/question/1036432.html

vào đây xem nhé,cách ngắn hơn

1 tháng 10 2017

 =(49-20căn6)(5+2căn6)căn(5+2căn6)/(9c... 
Đầu tiên bạn nhân cả tử và mẫu với 9căn3+11căn2 , đồng thời bạn biến đổi như sau: 
N=(25-2.5.2.căn6+24)(3+2.căn3.căn2+2)c... [(9căn3)^2-(11căn2)^2] =(5-2căn6)^2 . (căn3+căn2)^2 . căn(căn3+căn2)^2 . (9căn3+11căn2) /(243-242) 
=(căn3-căn2)^4 . (căn3+căn2)^3 . (9căn3+11căn2) =(căn3-căn2)(9căn3+11căn2) 
=27+11căn6-9căn6-22=5+2căn6.  

26 tháng 8 2020

Dự đoán \(MinA=2\)khi \(x=y=z=\frac{1}{2}\)và \(MaxA=3\)khi x = y = z = 1. Ta sẽ chứng minh \(2\le\frac{x+y}{1+z}+\frac{y+z}{1+x}+\frac{z+x}{1+y}\le3\)

Đặt \(a=x+1;b=y+1;c=z+1\), khi đó ta được\(a,b,c\in\left[\frac{3}{2};2\right]\)

Bất đẳng thức cần chứng minh được viết lại là \(2\le\frac{a+b-2}{c}+\frac{b+c-2}{a}+\frac{c+a-2}{b}\le3\)

#Trước hết ta chứng minh\(2\le\frac{a+b-2}{c}+\frac{b+c-2}{a}+\frac{c+a-2}{b}\)\(\Leftrightarrow5\le\frac{a+b-2}{c}+1+\frac{b+c-2}{a}+1+\frac{c+a-2}{b}+1\)\(\Leftrightarrow5\le\left(a+b+c-2\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

 Theo một đánh giá quen thuộc thì \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\)nên ta quy bất đẳng thức cần chứng minh về dạng \(\left(a+b+c-2\right)\frac{9}{a+b+c}\ge5\)

Đặt \(a+b+c=s\)thì ta cần chứng minh \(\frac{9\left(s-2\right)}{s}\ge5\Leftrightarrow s\ge\frac{9}{2}\)*đúng vì \(a+b+c\ge\frac{3}{2}.3=\frac{9}{2}\)*

Vậy bất đẳng thức bên trái được chứng minh

Đẳng thức xảy ra khi \(x=y=z=\frac{1}{2}\)

#Chứng minh \(\frac{a+b-2}{c}+\frac{b+c-2}{a}+\frac{c+a-2}{b}\le3\)

Không mất tính tổng quát, ta giả sử \(\frac{3}{2}\le a\le b\le c\le2\). Khi đó ta sẽ có\(\left(\frac{a}{b}+\frac{b}{a}\right)-\left(\frac{a}{2}+\frac{2}{a}\right)=\frac{\left(2-b\right)\left(a^2-2b\right)}{2ab}\le0\)hay \(\frac{a}{b}+\frac{b}{a}\le\frac{a}{2}+\frac{2}{a}\)

Hoàn toàn tương tự ta được \(\frac{b}{c}+\frac{c}{b}\le\frac{b}{2}+\frac{2}{b}\)\(\frac{a}{c}+\frac{c}{a}\le\frac{a}{2}+\frac{2}{a}\)

Cộng theo vế các bất đẳng thức trên ta được\(\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)+\left(\frac{a}{c}+\frac{c}{a}\right)\le a+\frac{4}{a}+\frac{b}{2}+\frac{2}{b}\)

Ta cần chứng minh\(a+\frac{4}{a}+\frac{b}{2}+\frac{2}{b}\le3+\frac{2}{a}+\frac{2}{b}+\frac{2}{c}\Leftrightarrow a+\frac{2}{a}+\frac{b}{2}\le3+\frac{2}{c}\)

Bất đẳng thức cuối cùng là một bất đẳng thức đúng vì\(\hept{\begin{cases}a+\frac{2}{a}-3=\frac{\left(a-1\right)\left(a-2\right)}{a}\le0\Leftrightarrow a+\frac{2}{a}\le3\\\frac{b}{2}\le1\le\frac{2}{c}\end{cases}}\)

Vậy bất đẳng thức bên phải được chứng minh

Đẳng thức xảy ra khi a = b = c = 1

26 tháng 8 2020

Dòng cuối là x = y = z = 1 nha