giải hệ phương trình sau
\(\hept{\begin{cases}\sqrt{y^2-8x+9}-\sqrt[3]{xy+12-6x}\le1\\\sqrt{2\left(x-y\right)^2+10x-6y+12}-\sqrt{y}=\sqrt{x+2}\end{cases}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{\left(x+2\right)\left(x-1\right)}+3\sqrt{x+2}=2\left(x+2\right)\)(đk bn tự xd nhé)
\(\Leftrightarrow\sqrt{x+2}\left(\sqrt{x-1}+3-2\sqrt{x+2}\right)\)=0
\(\Leftrightarrow\orbr{\begin{cases}x=-2\\\sqrt{x-1}+3=2\sqrt{x+2}\left(1\right)\end{cases}}\)
giai (1) bn se co x=2 kl x=+-2
Cho tam giác ABC vuông tại A, đường cao AH, biết BH=a; CH=b. Chứng minh:\(\sqrt{ab}< \frac{a+b}{2}\)
áp dụng hệ thức lượng vào tam giác vuông ABC có AH^2=BH.CH=9.16=144 nên AH=12 , áp dụng định lý pytago vào 2 tam giác ABH ,AHC ta được AB=15,AC=20 ADHE là hình chữ nhật vi có 3 góc=90độ áp dụng hệ thức lượng ta tính được AD và DH
\(\hept{\begin{cases}x+y+z=3\\\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\\xy+yz+zx=27\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x+y+z=3\\xyz=xy+yz+zx=27\\xy+yz+zx=27\end{cases}}\)
Từ đây ta thấy rằng x, y, z là nghiệm của phương trình:
\(X^3-3X^2+27X-27=0\)
Vì phương trình bậc 3 này chỉ có 1 nghiệm duy nhất (\(\Rightarrow x=y=z\)) và dễ thấy nghiệm đó không thỏa hệ ban đầu.
Vậy hệ vô nghiệm
\(\frac{a^4}{a\left(b+c\right)}+\frac{b^4}{b\left(a+c\right)}+\frac{c^4}{c\left(a+b\right)}\)
ap dung bdt cauchy -schwaz dang engel ta co
\(\frac{a^4}{a\left(b+c\right)}+\frac{b^4}{b\left(a+c\right)}+\frac{c^4}{c\left(a+b\right)}\ge\frac{\left(a^2+b^2+c^2\right)^2}{2\left(ab+bc+ac\right)}\)\(\)
ma \(a^2+b^2+c^2\ge ab+bc+ac\)
\(\Rightarrow VT\ge\frac{1}{2\left(a^2+b^2+c^2\right)}=\frac{1}{2}\)
dau =xay ra khi \(a=b=c=\frac{1}{\sqrt{3}}\)
\(sin^6x+cos^6x=\left(sin^2x+cos^2x\right)\left(sin^4x-sin^2xcos^2x+cos^4x\right)\)
\(=sin^4x-cos^2xsin^2x+cos^4x\)\(=\left(sin^2x+cos^2x\right)^2-3sin^2xcos^2x\)
\(=1-3sin^2xcos^2x\).
Như vậy \(sin^6x+cos^6x\) đạt giá trị nhỏ nhất khi \(3sin^2xcos^2x\) đạt GTLN.
Mà \(3sin^2xcos^2x\le3.\left(\frac{sin^2x+cos^2x}{2}\right)^2=\frac{3}{4}\).
Dấu bằng xảy ra khi và chỉ khi: \(sinx=cosx\) hay \(x=45^o\).
vậy GTNN của \(sin^6x+cos^6x=1-\frac{3}{4}=\frac{1}{4}\) khi \(x=45^o\).
\(\hept{\begin{cases}x^3y^3+1=2y^3\\\frac{x^2}{y}+\frac{x}{y^2}=2\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x^3+\frac{1}{y^3}=2\\\frac{x}{y}\left(x+\frac{1}{y}\right)=2\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}\left(x+\frac{1}{y}\right)\left(x^2+\frac{x}{y}+\frac{1}{y^2}\right)=2\\\frac{x}{y}\left(x+\frac{1}{y}\right)=2\end{cases}}\)
Suy ra:
\(\left(x+\frac{1}{y}\right)\left(x^2+\frac{x}{y}+\frac{1}{y^2}\right)=\frac{x}{y}\left(x+\frac{1}{y}\right)\)
\(\Leftrightarrow\left(x+\frac{1}{y}\right)\left(x^2+\frac{x}{y}+\frac{1}{y^2}-\frac{x}{y}\right)=0\)
\(\Leftrightarrow\left(x+\frac{1}{y}\right)\left(x^2+\frac{1}{y^2}\right)=0\)
Nhận thấy \(x^2+\frac{1}{y^2}\ne0\) vì nếu \(x^2+\frac{1}{y^2}=0\) thì \(\hept{\begin{cases}x=0\\y=0\end{cases}}\) (vô lý).
Suy ra: \(x+\frac{1}{y}=0\).
vậy đề bài sai.
Vừa làm bên Học 24 xong nhưng do gửi link thì bị lỗi nên t up lại, tiện thể ăn điểm luôn (tất nhiên giúp you vẫn là lí do chính, điểm là tiện thôi :))
\(pt\left(2\right)\Leftrightarrow\sqrt{2\left(x-y\right)^2+10x-6y+12}-\sqrt{y}-\sqrt{x+2}=0\)
\(\Leftrightarrow\sqrt{2\left(x-y\right)^2+10x-6y+12}-2\sqrt{y}-\left(\sqrt{x+2}-\sqrt{y}\right)=0\)
\(\Leftrightarrow\frac{2\left(x-y\right)^2+10x-6y+12-4y}{\sqrt{2\left(x-y\right)^2+10x-6y+12}+2\sqrt{y}}-\frac{x+2-y}{\sqrt{x+2}+\sqrt{y}}=0\)
\(\Leftrightarrow\frac{2\left(x-y+3\right)\left(x-y+2\right)}{\sqrt{2\left(x-y\right)^2+10x-6y+12}+2\sqrt{y}}-\frac{x-y+2}{\sqrt{x+2}+\sqrt{y}}=0\)
\(\Leftrightarrow\left(x-y+2\right)\left(\frac{2\left(x-y+3\right)}{\sqrt{2\left(x-y\right)^2+10x-6y+12}+2\sqrt{y}}-\frac{1}{\sqrt{x+2}+\sqrt{y}}\right)=0\)
\(\Rightarrow x=y-2\). Thay vào \(pt\left(1\right)\) ta có:
\(pt\left(1\right)\Leftrightarrow\sqrt{y^2-8\left(y-2\right)+9}-\sqrt[3]{\left(y-2\right)y+12-6\left(y-2\right)}\le1\)
\(\Leftrightarrow\sqrt{y^2-8y+25}-\sqrt[3]{y^2-8y+24}\le1\)
\(\Leftrightarrow\left(\sqrt{y^2-8y+25}-3\right)-\left(\sqrt[3]{y^2-8y+24}-2\right)\le0\)
\(\Leftrightarrow\frac{y^2-8y+25-9}{\sqrt{y^2-8y+25}+3}-\frac{y^2-8y+24-8}{\sqrt[3]{\left(y^2-8y+24\right)^2}+4+2\sqrt[3]{y^2-8y+24}}\le0\)
\(\Leftrightarrow\frac{\left(y-4\right)^2}{\sqrt{y^2-8y+25}+3}-\frac{\left(y-4\right)^2}{\sqrt[3]{\left(y^2-8y+24\right)^2}+4+2\sqrt[3]{y^2-8y+24}}\le0\)
\(\Leftrightarrow\left(y-4\right)^2\left(\frac{1}{\sqrt{y^2-8y+25}+3}-\frac{1}{\sqrt[3]{\left(y^2-8y+24\right)^2}+4+2\sqrt[3]{y^2-8y+24}}\right)\le0\)
\(\Rightarrow y=4\Rightarrow x=y-2=4-2=2\)
Vậy \(x=2;y=4\)
câu trả lời của mình là nguyễn thị chịu thua