K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 11 2018

500 to day 5cm 

=> 50 to day 0,5 cm

=> 10 to day 0.1 cm

Gaming DDT dung thi k nha Gaming DDT

2 tháng 11 2018

1 tờ giấy 1 cm thì chứa : 5 : 500 = 0,01 tờ

Một ngăn xếp cao 0,1 cm thì chứa : 0,1 : 0,01 = 10 ( tờ )

2 tháng 11 2018

\(\left(2x+3\right)\left(x^2+4x-5\right)\)

\(=2x^3+8x^2-10x+3x^2+12x-15\)

\(=2x^3+12x^2+2x-15\)

2 tháng 11 2018

Em học lớp 7 nè !!!

2 tháng 11 2018

trên mạng có mà 

1 tháng 11 2018

1. Thực hiện phép chia đa thức: ta có kết quả:

\(x^3+5x^2+3x+a=\left(x+3\right)\left(x^2+2x+b\right)+\left(-3-b\right)x+a-3b\)

Để f(x) chia hết cho x2+2x+b thì -3-b=0 và a-3b=0 <=> b=-3; a=-9

1 tháng 11 2018

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)

\(\Leftrightarrow\frac{ab+bc+ac}{abc}=\frac{1}{a+b+c}\)

\(\Leftrightarrow\left(a+b+c\right)\left(ab+bc+ac\right)-abc=0\)

\(\Leftrightarrow a^2b+abc+a^2c+b^2a+b^2c+abc+c^2b+c^2a=0\)

\(\Leftrightarrow ab\left(a+b\right)+ac\left(a+b\right)+bc\left(a+b\right)+c^2\left(a+b\right)=0\)

\(\Leftrightarrow\left(ab+ac+bc+c^2\right)\left(a+b\right)=0\)

\(\Leftrightarrow\left(a+b\right)\left(a+c\right)\left(b+c\right)=0\)

So ez

....

1 tháng 11 2018

Xét 3 số tự nhiên liên tiếp:

8p - 1; 8p; 8p + 1, trong 3 số này có 1 số \(⋮3\)

Do p nguyên tố \(>3\)

\(\Rightarrow p⋮3̸\)

\(\Rightarrow8p⋮3̸\) mà 8p - 1 nguyên tố  \(>3\)

\(\Rightarrow8p-1⋮3̸\)

\(\Rightarrow8p+1⋮3\)

Mà 1 < 3 < 8p + 1 => 8p + 1 là hợp số 

\(\Rightarrowđpcm\)

\(⋮̸\)= không chia hết 

1 tháng 11 2018

\(x^2+3y^2+2z^2-2x+12y+4z+15=0\)

\(x^2-2x+1+\left(\sqrt{3}y\right)^2+2.6.y+\left(2\sqrt{3}\right)^2+\left(\sqrt{2}z\right)^2+2.2.z+\left(\sqrt{2}\right)^2=0\)

\(\left(x-1\right)^2+\left(\sqrt{3}y+2\sqrt{3}\right)^2+\left(\sqrt{2}z+\sqrt{2}\right)^2=0\)

\(\Rightarrow x=1;y=-2;z=-1\)

1 tháng 11 2018

<=>(x2-2x+1)+(3y2+12y+12)+(2z2+4z+2)=0

<=>(x-1)2+3(y+2)2+2(z+1)2=0

Vì \(\hept{\begin{cases}\left(x-1\right)^2\ge0\\3\left(y+2\right)^2\ge0\\2\left(z+1\right)^2\ge0\end{cases}\Rightarrow\left(x-1\right)^2+3\left(y+2\right)^2+2\left(z+1\right)^2\ge0}\)

Dấu "=" xảy ra <=> \(\hept{\begin{cases}x-1=0\\y+2=0\\z+1=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\y=-2\\z=-1\end{cases}}}\)