Tìm tất cả các số nguyên tố p và số nguyên dương n thoả mãn p^n + 8 là lập phương của một số tự nhiên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu e:
$\widehat {A_1}+\widehat{A_2}=90^{\circ}$
$\widehat{A_2}=\widehat{C_1}$
$\Rightarrow \widehat{A_1}+\widehat{C_1}=90^{\circ}$
Mặt khác $\widehat{C_1}+\widehat{CAH} = 90^{\circ}$
Suy ra $A_1=\widehat{CAH}$ (1)
Chứng minh được $\Delta JAE = \Delta HAE$ (cgv-gn)
$\Rightarrow AJ=AH$ (2)
Từ (1); (2) và chung cạnh $AC$ ta suy ra $\Delta AJC=\Delta AHC$ (c.g.c).
Suy ra $\widehat {J}=90^{\circ}$ hay $CJ\bot IJ$.
Chứng minh tương tự $BI \bot IJ$.
Lời giải:
ĐKXĐ: $x\neq \pm 2; x\neq 0$
\(A=\left[\frac{3x^2+4}{x(x+2)}+\frac{x(2x-4)}{x(x+2)}\right].\frac{2x}{(x-2)(x+2)}\\ =\frac{3x^2+4+2x^2-4x}{x(x+2)}.\frac{2x}{(x-2)(x+2)}\\ =\frac{5x^2-4x+4}{x(x+2)}.\frac{2x}{(x-2)(x+2)}\\ =\frac{2(5x^2-4x+4)}{(x-2)(x+2)^2}\)
Biểu thức sau khi thu gọn xấu quá bạn. Bạn có viết sai đề không nhỉ?
Bài 1:
1; (d) // (d') ⇔ \(\left\{{}\begin{matrix}a=a'\\b\ne b'\end{matrix}\right.\)
⇔ \(\left\{{}\begin{matrix}m=2\\-7\ne0\end{matrix}\right.\)
Kết luận : (d) // (d') khi m = 2
2; (d)//(d') ⇔ \(\left\{{}\begin{matrix}a=a'\\b\ne b'\end{matrix}\right.\)
⇔ \(\left\{{}\begin{matrix}m+2=1\\4\ne-3\end{matrix}\right.\)
⇔ \(\left\{{}\begin{matrix}m=1-2\\4\ne-3\end{matrix}\right.\)
⇔ \(\left\{{}\begin{matrix}m=-1\\4\ne-3\end{matrix}\right.\)
Kết luận (d)//(d') khi m = -1
Bài 2:
a; (d) cắt (d') ⇔ a ≠ a'
⇔ m ≠ 2m + 1
2m - m ≠ -1
m ≠ -1
Vậy (d) cắt (d') khi m ≠ -1
b; (d)//(d') ⇔ \(\left\{{}\begin{matrix}m=2m+1\\3\ne-5\end{matrix}\right.\)
⇒ \(\left\{{}\begin{matrix}2m-m=-1\\3\ne-5\end{matrix}\right.\)
⇒ \(\left\{{}\begin{matrix}m=-1\\3\ne-5\end{matrix}\right.\)
Vậy (d)//(d') khi m = -1
1.
Để $(d)\parallel (d')$ thì: \(\left\{\begin{matrix} m=2\\ -7\neq 0\end{matrix}\right.\Leftrightarrow m=2\)
2.
Để $(d)\parallel (d')$ thì: \(\left\{\begin{matrix} m+2=1\\ 4\neq -3\end{matrix}\right.\Leftrightarrow m=-1\)
Lời giải:
Gọi PTĐT cần tìm là $y=ax+b$
Đường thẳng đi qua gốc tọa độ (0;0) nên:
$0=a.0+b\Rightarrow b=0$
Đường thẳng đi qua $A(2;1)$ nên:
$1=2a+b=2a+0=2a\Rightarrow a=\frac{1}{2}$
Vậy hệ số góc là $a=\frac{1}{2}$
Một người có thể bắt tay tối đa với \(0,1,2,...,19\) người khác. Nhưng nếu có người bắt tay với 0 người thì sẽ không thể có người bắt tay với 19 người. Ngược lại, nếu có người bắt tay với 19 người thì sẽ không có ai bắt tay với 0 người.
Do đó, số các số cái bắt tay khác nhau có thể xảy ra là 19. Nhưng do có 20 người nên theo nguyên lí Dirichlet, chắc chắn sẽ tồn tại 2 người có số cái bắt tay là như nhau.
Lời giải:
$B=\frac{x^2(2x+1)+2x(2x+1)-3(2x+1)-x+8}{2x+1}$
$=\frac{(2x+1)(x^2+2x-3)+8-x}{2x+1}=x^2+2x-3+\frac{8-x}{2x+1}$
Với $x$ nguyên, để $B$ nguyên thì $\frac{8-x}{2x+1}$ nguyên
Với $8-x, 2x+1$ là số nguyên thì điều này xảy ra khi $8-x\vdots 2x+1$
$\Rightarrow 2(8-x)\vdots 2x+1$
$\Rightarrow 17-(2x+1)\vdots 2x+1$
$\Rightarrow 17\vdots 2x+1$
$\Rightarrow 2x+1\in \left\{\pm 1; \pm 17\right\}$
$\Rightarrow x\in \left\{0; -1; 8; -9\right\}$ (thỏa mãn)
Đặt \(p^n+8=k^3\left(k\inℕ,k\ge3\right)\)
\(\Leftrightarrow k^3-8=p^n\)
\(\Leftrightarrow\left(k-2\right)\left(k^2+2k+4\right)=p^n\)
\(\Leftrightarrow k-2=p^i\left(i\inℕ,i\le n\right)\)
\(\Leftrightarrow k=p^i+2\)
Ta có \(p^n+8=k^3\)
\(\Leftrightarrow p^n+8=\left(p^i+2\right)^3\)
\(\Leftrightarrow p^n=p^{3i}+6p^{2i}+12p^i\) (*)
Đặt \(p^j=\dfrac{p^n}{p^i}\left(j\inℕ,j\le n\right)\), khi đó (*) thành
\(p^j=p^{2i}+6p^{2i}+12\) (**)
Xét \(i=0\Leftrightarrow p^j=19\Leftrightarrow\left(p,j\right)=\left(19,1\right)\) \(\Rightarrow n=1\)
Ta tìm được một bộ \(\left(p,n\right)=\left(17,1\right)\)
Nếu \(j=0\) thì vô lí. Xét \(i,j\ge1\) . Khi đó ta có \(12⋮p\) \(\Rightarrow p\in\left\{2,3\right\}\)
Với \(p=2\), ta có \(2^n+8=k^3\) \(\Rightarrow k⋮2\Rightarrow k=2l\left(l\inℕ\right)\)
\(\Rightarrow2^n+8=8l^3\Leftrightarrow2^{n-3}+1=l^3\) \(\left(n\ge3\right)\)
\(\Leftrightarrow\left(l-1\right)\left(l^2+l+1\right)=2^{n-3}\)
\(\Leftrightarrow l-1=2^m\left(m\le n-3\right)\)
\(\Leftrightarrow l=2^m+1\)
Do đó \(2^{n-3}+1=\left(2^m+1\right)^3\)
\(\Leftrightarrow2^{n-3}=2^{3m}+3.2^{2m}+3.2^m\)
\(\Leftrightarrow2^{n-3-m}=2^{2m}+3.2^m+3\)
\(\Rightarrow3⋮2^{n-3-m}\) \(\Leftrightarrow n-3-m=0\) \(\Leftrightarrow m=n-3\)
\(\Leftrightarrow l^2+l+1=1\) \(\Leftrightarrow l=0\) \(\Leftrightarrow k=0\), vô lí.
Với \(p=3\), ta có \(3^n+8=k^3\) \(\Rightarrow k\) chia 3 dư 2 \(\Rightarrow k=3q+2\left(q\inℕ^∗\right)\)
\(\Rightarrow3^n+8=\left(3q+2\right)^3\)
\(\Leftrightarrow3^n=27q^3+54q^2+36q\)
\(\Leftrightarrow3^{n-2}=q\left(3q^2+6q+4\right)\) \(\left(n\ge2\right)\)
Dễ thấy nếu \(n=2\) thì vô lí. Xét \(n\ge3\). Khi đó vì \(3q^2+6q+4⋮̸3\) nên \(3q^2+6q+4=1\), vô lí.
Vậy \(\left(p,n\right)=\left(19,1\right)\) là cặp số duy nhất thỏa mãn ycbt.