K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 10 2017

Ta có \(\frac{1}{\left(n+1\right)\sqrt{n}}=\frac{\sqrt{n}}{n\left(n+1\right)}=\sqrt{n}\left(\frac{1}{n}-\frac{1}{n+1}\right)\)

\(=\sqrt{n}\left(\frac{1}{\sqrt{n}}+\frac{1}{\sqrt{n+1}}\right)\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)

\(=\left(1+\frac{\sqrt{n}}{\sqrt{n+1}}\right)\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)< 2\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)

=> biểu thức trên sẽ \(< 2\left(1-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+......+\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)

                                  \(=2\left(1-\frac{1}{\sqrt{n+1}}\right)=2-\frac{2}{\sqrt{n+1}}< 2\)\(\left(dpcm\right)\)

20 tháng 10 2018

Ta có: \(\frac{1}{\left(n+1\right)\sqrt{n}}\)

\(=\frac{\sqrt{n}}{n\left(n+1\right)}\)

\(=\sqrt{n}\left(\frac{1}{n}-\frac{1}{n+1}\right)\)

\(=\sqrt{n}\left(\frac{1}{\sqrt{n}}+\frac{1}{\sqrt{n+1}}\right)\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)

\(=\left(1+\frac{\sqrt{n}}{\sqrt{n+1}}\right)\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)< 2\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)

=> Biểu thức trên sẽ bé hơn \(2\left(1-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)

\(=2\left(1-\frac{1}{\sqrt{n+1}}\right)=2-\frac{2}{\sqrt{n+1}}< 2\Rightarrowđpcm\)

13 tháng 10 2017

arigato mk đang ôn thi mk đang học lớp 9 sắp thi 10 r hông bít ang năm thi thế nào nữa

14 tháng 10 2017

đề này khó hơn hà nội :)

16 tháng 11 2017

Đề kiểu gì vậy. 

Ta có: \(2p^2⋮p^2\)thì là hợp số luông chứ chứng minh cái gì nữa

16 tháng 11 2017
Đề sai bạn ơi!!!
14 tháng 10 2017

Đặt \(x^2+\left(3-x\right)^2=a\ge5\)

Ta có: 

\(x\left(3-x\right)=-\frac{1}{2}\left(2x^2-6x\right)\)

\(=-\frac{1}{2}\left(x^2-6x+9+x^2-9\right)\)

\(=-\frac{1}{2}\left(x^2+\left(3-x\right)^2-9\right)=-\frac{1}{2}\left(a-9\right)\)

Áp dụng ta có: 

\(P=x^4+\left(3-x\right)^4+6x^2\left(3-x\right)^2=\left(x^2+\left(3-x\right)^2\right)^2+4x^2\left(3-x\right)^2\)

\(=a^2+\left(a-9\right)^2\)

\(=2a^2-18a+81=\left(2a^2-20a+50\right)+2a+31\)

\(=2\left(a-5\right)^2+2a+31\ge0+2.5+31=41\)