Nêu cách cắt một miếng giấy phẳng hình tam giác ra thành 1 hình tam giác, 1 hình tứ giác có diện tích bằng nhau. Giải thích cách làm nếu được.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có\(\sqrt{x+4\sqrt{x-4}}\) \(=\sqrt{x-4+4\sqrt{x-4}+4}\)\(=\sqrt{\left(\sqrt{x-4}\right)^2+2.\sqrt{x-4}.2+2^2}\)
\(=\sqrt{\left(\sqrt{x-4}+2\right)^2}\)\(=\sqrt{x-4}+2\)
Bằng cách tương tự, ta có: \(\sqrt{x-4\sqrt{x-4}}=\sqrt{x-4}-2\)
\(\Rightarrow\sqrt{x+4\sqrt{x-4}}-\sqrt{x-4\sqrt{x-4}}\)\(=\sqrt{x-4}+2-\left(\sqrt{x-4}-2\right)\)\(=4\)
Vậy [...]
Ta có: \(a^3+b^3=2021c^3\)\(\Leftrightarrow a^3+b^3+c^3=2022c^3\)
Mà \(2022⋮3\)\(\Rightarrow2022c^3⋮3\)\(\Rightarrow a^3+b^3+c^3⋮3\)
Mặt khác \(\left(a^3+b^3+c^3\right)-\left(a+b+c\right)\)\(=\left(a^3-a\right)+\left(b^3-b\right)+\left(c^3-c\right)\)
\(=a\left(a^2-1\right)+b\left(b^2-1\right)+c\left(c^2-1\right)\)
\(=a\left(a-1\right)\left(a+1\right)+b\left(b-1\right)\left(b+1\right)+c\left(c-1\right)\left(c+1\right)\)
Vì \(a,a-1,a+1\)là 3 số liên tiếp nên trong 3 số này luôn tồn tại một bội của 3
\(\Rightarrow a\left(a-1\right)\left(a+1\right)⋮3\)
Tương tự, ta cũng có \(b\left(b-1\right)\left(b+1\right)⋮3\)và \(c\left(c-1\right)\left(c+1\right)⋮3\)
\(\Rightarrow a\left(a-1\right)\left(a+1\right)+b\left(b-1\right)\left(b+1\right)+c\left(c-1\right)\left(c+1\right)⋮3\)
\(\Rightarrow\left(a^3+b^3+c^3\right)-\left(a+b+c\right)⋮3\)
Mà \(a^3+b^3+c^3⋮3\left(cmt\right)\)\(\Rightarrow a+b+c⋮3\left(đpcm\right)\)
Điều kiện \(x,y\ne-1\)
Xét phương trình thứ hai:
\(xy+x+y=3\)\(\Leftrightarrow xy+x+y+1=4\)\(\Leftrightarrow x\left(y+1\right)+\left(y+1\right)=4\)\(\Leftrightarrow\left(x+1\right)\left(y+1\right)=4\)
Như vậy hệ đã cho \(\Leftrightarrow\hept{\begin{cases}\frac{1}{x+1}+\frac{1}{y+1}=1\\\left(x+1\right)\left(y+1\right)=4\end{cases}}\)(*)
Đặt \(\hept{\begin{cases}x+1=a\\y+1=b\end{cases}\left(a,b\ne0\right)}\), lúc này (*) \(\Leftrightarrow\hept{\begin{cases}\frac{1}{a}+\frac{1}{b}=1\\ab=4\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{a+b}{ab}=1\\ab=4\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{a+b}{4}=1\\b=\frac{4}{a}\end{cases}}\Leftrightarrow\hept{\begin{cases}a+\frac{4}{a}=4\left(1\right)\\b=\frac{4}{a}\left(2\right)\end{cases}}\)
Giải phương trình \(\left(1\right)\), ta có: \(a+\frac{4}{a}=4\)\(\Leftrightarrow\left(\sqrt{a}\right)^2-2.\sqrt{a}.\frac{2}{\sqrt{a}}+\left(\frac{2}{\sqrt{a}}\right)^2=0\)
\(\Leftrightarrow\left(\sqrt{a}-\frac{2}{\sqrt{a}}\right)^2=0\)\(\Leftrightarrow\sqrt{a}-\frac{2}{\sqrt{a}}=0\)\(\Leftrightarrow\sqrt{a}=\frac{2}{\sqrt{a}}\)\(\Leftrightarrow\left(\sqrt{a}\right)^2=2\)\(\Leftrightarrow a=2\)(nhận)
Thay vào \(\left(2\right)\), ta có: \(b=\frac{4}{a}=\frac{4}{2}=2\)(nhận)
Như vậy ta có \(a=b=2\)\(\Leftrightarrow x+1=y+1=2\)\(\Leftrightarrow x=y=1\)(nhận)
Vậy hệ đã cho có nghiệm duy nhất (1;1)
ny lê song phương là bùi diệu linh đó