Bài 4. (1 điểm) Cho hai số thực $x,y\ne 0$, chứng minh rằng $\dfrac{4x^2y^2}{(x^2+y^2)^2}+\dfrac{x^2}{y^2}+\dfrac{y^2}{x^2} \ge 3$.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
câu a
\(\dfrac{3x+15}{x^2-9}+\dfrac{1}{x+3}-\dfrac{2}{x-3}\\ =\dfrac{3\cdot\left(x+5\right)}{\left(x-3\right)\cdot\left(x+3\right)}+\dfrac{1}{x+3}-\dfrac{2}{x-3}\\ =\dfrac{3\cdot\left(x+5\right)}{\left(x-3\right)\cdot\left(x+3\right)}+\dfrac{x-3}{\left(x+3\right)\cdot\left(x-3\right)}-\dfrac{2\cdot\left(x+3\right)}{\left(x-3\right)\cdot\left(x+3\right)}\)\(=\dfrac{3\cdot\left(x+5\right)+x-3-2\cdot\left(x+3\right)}{\left(x-3\right)\cdot\left(x+3\right)}\\ =\dfrac{3x+15+x-3-2x-6}{\left(x-3\right)\cdot\left(x+3\right)}\\ =\dfrac{2x+6}{\left(x+3\right)\cdot\left(x-3\right)}\\ =\dfrac{2\cdot\left(x+3\right)}{\left(x+3\right)\cdot\left(x-3\right)}\\ =\dfrac{2}{x-3}\)
câu b
để \(\dfrac{2}{x-3}=\dfrac{2}{3}\) thì \(x-3=3\)
\(\Rightarrow x=3+3=6\)
vậy \(x=6\) thì \(A=\dfrac{2}{3}\)
Gọi quãng đường AB là: \(x\left(km,x>0\right)\)
Vận tốc trung bình là 15km/h nên vận tốc lúc về là: \(2\cdot15-12=18\left(km/h\right)\)
Thời gian đi là: \(\dfrac{x}{12}\left(h\right)\)
Thời gian về là: \(\dfrac{x}{18}\left(h\right)\)
Lúc về nhiều hơn lúc đi 45 phút ta có phương trình:
\(\dfrac{x}{12}-\dfrac{x}{18}=\dfrac{3}{4}\)
\(\Leftrightarrow x\left(\dfrac{1}{12}-\dfrac{1}{18}\right)=\dfrac{3}{4}\)
\(\Leftrightarrow x\cdot\dfrac{1}{36}=\dfrac{3}{4}\)
\(\Leftrightarrow x=\dfrac{3}{4}:\dfrac{1}{36}\)
\(\Leftrightarrow x=27\left(km\right)\)
Vậy: ...
Gọi x (km) là độ dài quãng đường AB (x > 0)
Thời gian đi là: x/15 (h)
Thời gian về là: x/12 (h)
45 phút = 3/4 (h)
Theo đề bài ta có phương trình:
x/12 - x/15 = 3/4
5x - 4x = 45
x = 45 (nhận)
Vậy quãng đường AB dài 45 km
A B C H D E
a,Ta có: đường cao AH
=> AH vuông góc BC => AHB = 90`
Tam giác ABC vuông tại A
=> ABC = 90`
Xét hai tam giác ABC và HBA có:
- AHB = ABC (=90`)
- chung góc B
=> Δ ABC ~ Δ HBA (g-g)
=> \(\dfrac{AB}{HB}=\dfrac{BC}{BA}\) ( các cạnh tưng ứng )
=> AB.BA=HB.BC \(AB^2\) = BC.BH
Vậy ΔABC ~ ΔHBA ; \(AB^2\)= BC.BH
b,
a,Ta có: đường cao AH
=> AH vuông góc BC => AHB = 90`
Tam giác ABC vuông tại A
=> ABC = 90`
Xét hai tam giác ABC và HBA có:
- AHB = ABC (=90`)
- chung góc B
=> Δ ABC ~ Δ HBA (g-g)
=> ����=����HBAB=BABC ( các cạnh tưng ứng )
Vậy ΔABC ~ ΔHBA ; ��2AB2= BC.BH
Lời giải:
a. Xét tam giác $ABC$ và $HBA$ có:
$\widehat{B}$ chung
$\widehat{BAC}=\widehat{BHA}=90^0$
$\Rightarrow \triangle ABC\sim \triangle HBA$ (g.g)
b.
$BC=\sqrt{AB^2+AC^2}=\sqrt{15^2+20^2}=25$ (cm) - định lý Pitago
$AH=2S_{ABC}:BC=AB.AC:BC=15.20:25=12$ (cm)
$BH=\sqrt{AB^2-AH^2}=\sqrt{15^2-12^2}=9$ (cm) - định lý Pitago
c.
Theo tính chất đường phân giác:
$\frac{DA}{DC}=\frac{AB}{BC}=\frac{15}{25}=\frac{3}{5}$
$DA+DC=AC=20$
$\Rightarrow DA=20:(3+5).3=7,5$ (cm)
$DC=AC-DA=20-7,5=12,5$ (cm)
Đk: \(-1< x< 1\)
Ta có \(2\sqrt{2022\left(1-x^2\right)}\le2023-x^2\)
Nếu \(0\le x< 1\) thì \(x\left(x+2021\right)\ge0\)
\(\Leftrightarrow x^2+2021x\ge0\)
\(\Leftrightarrow2023-x^2\le2021x+2023\)
\(\Rightarrow\) \(2\sqrt{2022\left(1-x^2\right)}\le2023-x^2\le2021x+2023\)
\(\Leftrightarrow2\sqrt{2022}\le\dfrac{2021x+2023}{\sqrt{1-x^2}}\)
Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}2022=1-x^2\\x=0\end{matrix}\right.\), vô lý.
Vậy nếu \(0\le x< 1\) thì BĐT đúng.
Xét \(-1< x< 0\) thì đặt \(x=-t\left(0< t< 1\right)\).
BĐT cần chứng minh \(\Leftrightarrow\dfrac{2023-2021t}{\sqrt{1-t^2}}\ge2\sqrt{2022}\)
Ta có \(2023-2021t\)
\(=2022-2022t+1+t\)
\(=2022\left(1-t\right)+\left(1+t\right)\)
\(\ge2\sqrt{2022\left(1-t\right)\left(1+t\right)}\)
\(=2\sqrt{2022\left(1-t^2\right)}\)
\(\Leftrightarrow\dfrac{2023-2021t}{\sqrt{1-t^2}}\ge2\sqrt{2022}\)
Dấu "=" xảy ra \(\Leftrightarrow2022-2022t=1+t\) \(\Leftrightarrow t=\dfrac{2021}{2023}\) \(\Leftrightarrow x=-\dfrac{2021}{2023}\)
Vậy ta có đpcm. Dấu "=" xảy ra \(\Leftrightarrow x=-\dfrac{2021}{2023}\)
Trường hợp \(x\) = - \(\dfrac{2020}{2021}\) thì sao em nhỉ?
pt đã cho \(\Leftrightarrow\dfrac{2x-50}{50}-1+\dfrac{2x-51}{49}-1+\dfrac{2x-52}{48}-1+\dfrac{2x-53}{47}-1+\dfrac{2x-200}{25}+4=0\)
\(\Leftrightarrow\dfrac{2x-50-50}{50}+\dfrac{2x-51-49}{49}+\dfrac{2x-52-48}{48}+\dfrac{2x-53-47}{47}+\dfrac{2x-200+100}{25}=0\)
\(\Leftrightarrow\dfrac{2x-100}{50}+\dfrac{2x-100}{49}+\dfrac{2x-100}{48}+\dfrac{2x-100}{47}+\dfrac{2x-100}{25}=0\)
\(\Leftrightarrow\left(2x-100\right)\left(\dfrac{1}{50}+\dfrac{1}{49}+\dfrac{1}{48}+\dfrac{1}{47}+\dfrac{1}{25}\right)=0\)
\(\Leftrightarrow2x-100=0\) (vì \(\dfrac{1}{50}+\dfrac{1}{49}+\dfrac{1}{48}+\dfrac{1}{47}+\dfrac{1}{25}>0\))
\(\Leftrightarrow x=50\)
Vậy pt đã cho có tập nghiệm \(S=\left\{50\right\}\)
Do AB // DE (gt)
Theo hệ quả của định lý Thalès, ta có:
AB/DE = BC/CD
x = BC = AB.CD : DE
x = BC = 5.7,2 : 15 = 2,4
Do AB // DE (gt)
Theo hệ quả của định lý Thalès, ta có:
AB/DE = AC/CE
y = CE = AC.DE : AB
= 3.15 : 7,2
= 6,25
=> (x+1) . 5 = (2x + 5) . 3
5x + 5 = 6x + 15
5x + 6x = 15-5
11x =10
x = 11\10
Ta có \(VT=\dfrac{\dfrac{4x^2}{y^2}}{\left(\dfrac{x^2}{y^2}+1\right)^2}+\dfrac{x^2}{y^2}+\dfrac{y^2}{x^2}\)
Đặt \(\dfrac{x^2}{y^2}=t\left(t>0\right)\) thì VT thành
\(\dfrac{4t}{\left(t+1\right)^2}+t+\dfrac{1}{t}\)
\(=\dfrac{4t}{\left(t+1\right)^2}+\dfrac{t^2+1}{t}\)
\(=\dfrac{4t}{\left(t+1\right)^2}+\dfrac{\left(t+1\right)^2}{t}-2\)
Đặt \(\dfrac{\left(t+1\right)^2}{t}=u\left(u\ge4\right)\) (vì BĐT \(\left(a+b\right)^2\ge4ab\))
Khi đó \(VT=u+\dfrac{4}{u}-2\)
\(=\dfrac{4}{u}+\dfrac{u}{4}+\dfrac{3u}{4}-2\)
\(\ge2\sqrt{\dfrac{4}{u}.\dfrac{u}{4}}+\dfrac{3.4}{4}-2\)
\(=2+3-2\)
\(=3\)
\(\Rightarrow VT\ge3\)
Dấu "=" xảy ra \(\Leftrightarrow u=4\) \(\Leftrightarrow t=1\) \(\Leftrightarrow x=\pm y\)
Vậy ta có đpcm. Dấu "=" xảy ra \(\Leftrightarrow x=\pm y\)