Cho x2+y2=1
CMR giá trị biểu thức 2(x6+y6)-3(x4+y4) ko phụ thuộc vào giá trị của x,y
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a+b=c+\frac{1}{2019}\Leftrightarrow a+b-c=\frac{1}{2019}\Leftrightarrow\frac{1}{a+b-c}=2019\)
\(\frac{1}{a}+\frac{1}{b}=\frac{1}{c}+2019\Rightarrow\frac{1}{a}+\frac{1}{b}-\frac{1}{c}=2019\)
\(\Rightarrow\frac{1}{a}+\frac{1}{b}-\frac{1}{c}=\frac{1}{a+b-c}\Rightarrow\frac{1}{a}+\frac{1}{b}=\frac{1}{a+b-c}+\frac{1}{c}\)
\(\Leftrightarrow\frac{a+b}{ab}=\frac{a+b}{c\left(a+b-c\right)}\Leftrightarrow c\left(a+b-c\right)\left(a+b\right)=\left(a+b\right)ab\)
\(\Leftrightarrow c\left(a+b-c\right)\left(a+b\right)-ab\left(a+b\right)=0\)
\(\Leftrightarrow\left(a+b\right)\left(ca+bc-c^2-ab\right)=0\)
\(\Leftrightarrow\left(a+b\right)\left[c\left(a-c\right)-b\left(a-c\right)\right]=0\)
\(\Leftrightarrow\left(a+b\right)\left(c-b\right)\left(a-c\right)=0\)
=>a=-b hoặc c=b hoặc a=c
không mất tính tổng quát, giả sử a=-b, ta có:
\(P=\left(-b^{2019}+b^{2019}-c^{2019}\right)\left(-\frac{1}{b^{2019}}+\frac{1}{b^{2019}}-\frac{1}{c^{2019}}\right)=\left(-c\right)^{2019}\cdot\left(\frac{-1}{c}\right)^{2019}=1\)
tương tư với các trường hợp khác ta cũng có P=1
Vậy P=1
Mong mọi người giúp với, mình đang cần gấp!!! Thanks
a) (x+3)^2-(x-5)(x+5)-6x
= x^2+6x+9-x^2+25-6x
= 9+25
= 94
vậy...
\(2.\left(x-4\right)-x+3=0\)
\(2x-8-x+3=0\)
\(x-5=0\)
\(x=5\)
\(x^2-25-x-5=0\)
\(\left(x-5\right)\left(x+5\right)-\left(x+5\right)=0\)
\(\left(x+5\right)\left(x-5-1\right)=0\)
\(\left(x+5\right)\left(x-6\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x+5=0\\x-6=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-5\\x=6\end{cases}}}\)
Vậy \(\orbr{\begin{cases}x=-5\\x=6\end{cases}}\)
\(x^3+6x^2+9x=0\)
\(x\left(x^2+6x+9\right)=0\)
\(x\left(x+3\right)^2=0\)
\(\Rightarrow\hept{\begin{cases}x=0\\x=-3\end{cases}}\)
giúp mk với nhé mai nộp rồi
ai nhanh mình sẽ k cho
\(2\left(x^6+y^6\right)-3\left(x^4+y^4\right)\)
\(=2\left(x^2+y^2\right)\left(x^4-x^2y^2+y^4\right)-3\left(x^4+y^4\right)\)
\(=2x^4-2x^2y^2+2y^4-3x^4-3y^4\)
\(=-x^4-2x^2y^2-y^4=-\left(x^2+y^2\right)^2=-1^2=-1\)