rút gọn
A=\(\frac{\left(x^2-y\right)\left(y+1\right)+x^2y^2-1}{\left(x^2+y\right)\left(y+1\right)+x^2y^2+1}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,x thuộc R
x khác \(\frac{4}{3}\)và x khác 0 vì(1)
b,\(\frac{9x^2-16}{3x^2-4x}\)
\(=\frac{\left(3x\right)^2-4^2}{x\left(3x-4\right)}\)(1)
\(=\frac{\left(3x-4\right)\left(3x+4\right)}{x\left(3x-4\right)}\)
\(=\frac{3x+4}{x}\)
a) \(B=\frac{9x^2-16}{3x^2-4x}=\frac{9x^2-16}{x.\left(3x-4\right)}\)
để B xác định => x.(3x-4) khác 0 => \(\hept{\begin{cases}x\ne0\\3x\ne4\end{cases}\Rightarrow\hept{\begin{cases}x\ne0\\x\ne\frac{4}{3}\end{cases}}}\)
b) \(B=\frac{9x^2-16}{3x^2-4x}=\frac{\left(3x\right)^2-4^2}{x.\left(3x-4\right)}=\frac{\left(3x-4\right).\left(3x+4\right)}{x.\left(3x-4\right)}=\frac{3x+4}{x}\)
Cho hình thang ABCD (AB//CD) gọi IQ lần lượt là AD BC biết AB=10cm CD=20cm tính độ dài đoạn thẳng PQ
A B I Q 10cm 20cm D C
Hình thang ABCD có:
I là trung điểm của đoạn thẳng AD (gt)
Q là trung điểm của đoạn thẳng BC (gt)
\(\Rightarrow\)IQ là đường trung bình của hình thang ABCD
\(\Rightarrow IQ=\frac{AB+CD}{2}\)
Thay \(IQ=\frac{10+20}{2}\)
\(\Rightarrow IQ=15\)
Vậy IQ = 15cm
\(1;a,x^3+y^3=\left(x+y\right)^3-3xy\left(x+y\right)\)
\(\Rightarrow2=1^3-3xy\)
\(\Rightarrow3xy=1-2=-1\)
\(\Rightarrow xy=-\frac{1}{3}\)
\(b,N=\left(x^3+y^3\right)\left(x+y\right)^2=2\Rightarrow\left(x^3+y^3\right)\left(x^2+2xy+y^2\right)=2\)
\(\Rightarrow x^5+2x^4y+x^3y^2+x^2y^3+2xy^4+y^5=2\)
\(\Rightarrow x^5+y^5+2xy\left(x^3+y^3\right)+x^2y^2\left(x+y\right)=2\)
\(\Rightarrow x^5+y^5+2.\frac{-1}{3}.2+\frac{1}{9}.1=2\)
\(\Rightarrow x^5+y^5=2+\frac{4}{3}-\frac{1}{9}=2+\frac{7}{9}=\frac{25}{9}\)
a) \(x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)=1\cdot\left(x^2-xy+y^2\right)=x^2-xy+y^2=2\left(1\right)\)
\(x+y=1\Rightarrow\left(x+y\right)^2=1^2\Rightarrow x^2+2xy+y^2=1\left(2\right)\)
Lấy (1) - (2) ta có : \(x^2-xy+y^2-x^2-2xy-y^2=2-1\)
\(\Leftrightarrow-3xy=1\)
\(\Leftrightarrow xy=\frac{-1}{3}\)
b) \(x+y=1\)
\(\Leftrightarrow\left(x+y\right)^5=1^5\)
\(\Leftrightarrow x^5+5x^4y+10x^2y^3+10x^3y^2+5xy^4+y^5=1\)
\(\Leftrightarrow x^5+y^5=1-\left(5x^4y+4xy^4+10x^2y^3+10x^3y^2\right)\)
\(\Leftrightarrow x^5+y^5=1-\left[5xy\left(x^3+y^3\right)+10x^2y^2\left(x+y\right)\right]\)
Từ câu a) ta có \(x\cdot y=\frac{-1}{3};x^3+y^3=2;x+y=1\)
\(\Leftrightarrow x^5+y^5=1-\left[5\cdot\left(\frac{-1}{3}\right)\cdot2+10\cdot\left(-\frac{1}{3}\right)\cdot\left(\frac{-1}{3}\right)\cdot1\right]\)
\(\Leftrightarrow x^5+y^5=1-\left(-\frac{20}{9}\right)\)
\(\Leftrightarrow x^5+y^5=\frac{29}{9}\)
Xét ba điểm O (0; 0), A (a; b) và B (c;d). Diện tích tam giác OAB bằng\(\frac{|ad-bc|}{2}\). Do đó, để làm tam giác OAB có diện tích bằng 1/2 ta chỉ cần chọn a,b,c,d sao cho ad - bc =\(\pm\)1. Do đó ta chỉ cần chọn a,b đủ lớn và nguyên tố cùng nhau thì luôn tồn tại c,d đủ lớn sao cho d - bc =\(\pm\)1. Do đó, tồn tại một tam giác có các đỉnh đều có tọa độ nguyên, có diện tích bằng 1/2 và độ dài các cạnh đều lớn hơn 2018.
Học tốt!!!
a, Theo giả thiết : AM//NF và AN//MF => ANFM là hình bình hành (1)
mà AD = AB; DN = BM => tg vuông ADN = tg vuông ABM => AN = AM (2)
và ^AND = ^AMB => AN _I_ AM (3) ( vì đã có DN _I_ BM)
(1) và (2) => ANFM là hình thoi (4)
(3) và (4) => ANFM là hình vuông
b, Gọi P và giao điểm của AM và CN. Dễ thấy tg vuông ANP đồng dạng tg vuông CMP ( vì có ^P đối đỉnh ) => AP/CP = AN/CM = FM/CM (5) (vì FM = AN)
Mặt khác : AP _I_ FM ( vì ANFM là hình vuông ) và CP _I_ CM => ^APC = ^FMC (6) ( góc có cạnh tương ứng vuông góc )
(5) và (6) => tg APC đồng dạng tam giác FMC => ^FCM = ^ACP = 45o = ^FCN => CF là tia phân giác của ^MCN và ^ACF = 90o
c, Dễ thấy AO/AM = AD/AC = √2 (7)
và vì ^OAM = ^DAC = 45o <=> ^OAM - ^DAM = ^DAC - ^DAM <=> ^OAD = ^MAC (8)
(7) và (8) => tg AOD đồng dạng tg AMC => ^ADO = ^ACM = 135o => ^ODN = 45o = ^BDC => B; D; O thẳng hàng
Dễ thấy BO//CF => BOFC là hình thang
link hình 1 đây nha mình nhầm:https://photos.app.goo.gl/qA8ev4JkVjLRaFNe7
hình 2 ko có, viết nhầm đề
\(\frac{x^2y-y^2+x^2-y+x^2y^2-1}{x^2y+y^2+x^2+y+x^2y^2+1}=\frac{\left(x^2y-y\right)+\left(x^2y^2-y^2\right)+\left(x^2-1\right)}{\left(x^2y+y\right)+\left(x^2y^2+y^2\right)+\left(x^2+1\right)}\)
=\(\frac{\left(x^2-1\right)\cdot\left(y^2+y+1\right)}{\left(x^2+1\right)\cdot\left(y^2+y+1\right)}\)=\(\frac{x^2-1}{x^2+1}\)
kết quả là -1 nha!