K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 12 2017

 \(\sqrt{3x+7}=2+\sqrt{x+1}\)

\(3x+7=4+4\sqrt{x+1}+x+1\)

\(2x+2=4\sqrt{x+1}\)

\(x+1=2\sqrt{x+1}\)

\(x^2+2x+1=4\left(x+1\right)\)

Đến đây làm nốt nhá :)))) 

6 tháng 12 2017

1/ Ta chứng minh với \(x>6\)thì \(10.2^x>13x^2\) cái này dùng quy nạp chứng minh được:

Từ đây ta xét với \(x>6\)thì

\(\Rightarrow\hept{\begin{cases}10.2^6-13x^2>0\\10-3x< 0\end{cases}}\)

\(\Rightarrow\)Phương trình vô nghiệm.

Giờ chỉ cần kiểm tra \(x=1;2;3;4;5;6\) xem cái nào thỏa mãn nữa là xong.

6 tháng 12 2017

2/ \(3^x+1=\left(y+1\right)^2\)

\(\Leftrightarrow3^x=y\left(y+2\right)\)

Với \(y=1\)

\(\Rightarrow x=1\)

Với \(y>1\)

Với \(y⋮3\)\(\Rightarrow y+2⋮̸3\)

Với \(y+2⋮3\)\(\Rightarrow y⋮̸3\)

Vậy \(x=1,y=1\)

6 tháng 12 2017

Giao điểm của 2 hàm số là nghiệm của phương trình:

x2=2mx-2m+3 <=> x2-2mx+2m-3=0 (1)

\(\Delta'=m^2-2m+3=m^2-2m+1+2=\left(m-1\right)^2+2\ge2\)Với mọi m

=> Phương trình luôn có 2 nghiệm phân biệt.

Gọi x1 và x2 là 2 nghiệm của phương trình. Ta có: y1=x12 ; y2=x22

=> y1+y2=x12+x22 =(x1+x2)2-2x1.x2

Xét phương trình (1). Theo định lý Vi-et ta có:

x1+x2=-b/a=2m

x1.x2=c/a=2m-3

=> y1+y2=(x1+x2)2-2x1.x2 = (2m)2-2(2m-3)=4m2-4m+6

y1+y2 < 9 <=> 4m2-4m+6 < 9 <=> 4m2-4m-3 < 0

<=> 4m2-4m+1-4<0 <=> (2m-1)2-4 < 0 <=> (2m-1-2)(2m-1+2) < 0

<=> (2m-3)(2m+1) < 0 => -1/2 < m < 3/2

Đáp số: Với -1/2 < m < 3/2 thì giao điểm của 2 đồ thị thỏa mãn điều kiện y1+y2 < 9 

6 tháng 12 2017

Bình phương lên