Tìm điều kiện của m và n để hai đường thẳng
(d1) : y = mx + ( n-5 )
(d2) : y = (4m +4 ) x + ( 7 - n )
a, Cắt nhau
b, song song với nhau
c, vuông góc với nhau
d, trùng nhau
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{3x+7}=2+\sqrt{x+1}\)
\(3x+7=4+4\sqrt{x+1}+x+1\)
\(2x+2=4\sqrt{x+1}\)
\(x+1=2\sqrt{x+1}\)
\(x^2+2x+1=4\left(x+1\right)\)
Đến đây làm nốt nhá :))))
1/ Ta chứng minh với \(x>6\)thì \(10.2^x>13x^2\) cái này dùng quy nạp chứng minh được:
Từ đây ta xét với \(x>6\)thì
\(\Rightarrow\hept{\begin{cases}10.2^6-13x^2>0\\10-3x< 0\end{cases}}\)
\(\Rightarrow\)Phương trình vô nghiệm.
Giờ chỉ cần kiểm tra \(x=1;2;3;4;5;6\) xem cái nào thỏa mãn nữa là xong.
2/ \(3^x+1=\left(y+1\right)^2\)
\(\Leftrightarrow3^x=y\left(y+2\right)\)
Với \(y=1\)
\(\Rightarrow x=1\)
Với \(y>1\)
Với \(y⋮3\)\(\Rightarrow y+2⋮̸3\)
Với \(y+2⋮3\)\(\Rightarrow y⋮̸3\)
Vậy \(x=1,y=1\)
Giao điểm của 2 hàm số là nghiệm của phương trình:
x2=2mx-2m+3 <=> x2-2mx+2m-3=0 (1)
\(\Delta'=m^2-2m+3=m^2-2m+1+2=\left(m-1\right)^2+2\ge2\)Với mọi m
=> Phương trình luôn có 2 nghiệm phân biệt.
Gọi x1 và x2 là 2 nghiệm của phương trình. Ta có: y1=x12 ; y2=x22
=> y1+y2=x12+x22 =(x1+x2)2-2x1.x2
Xét phương trình (1). Theo định lý Vi-et ta có:
x1+x2=-b/a=2m
x1.x2=c/a=2m-3
=> y1+y2=(x1+x2)2-2x1.x2 = (2m)2-2(2m-3)=4m2-4m+6
y1+y2 < 9 <=> 4m2-4m+6 < 9 <=> 4m2-4m-3 < 0
<=> 4m2-4m+1-4<0 <=> (2m-1)2-4 < 0 <=> (2m-1-2)(2m-1+2) < 0
<=> (2m-3)(2m+1) < 0 => -1/2 < m < 3/2
Đáp số: Với -1/2 < m < 3/2 thì giao điểm của 2 đồ thị thỏa mãn điều kiện y1+y2 < 9