tìm a,b sao cho đa thức x3-3bx+2a chia hết cho (x+1)2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số ghế và số học sinh của lớp lần lượt là \(x,y\left(x,y\inℕ^∗\right)\)
Nếu xếp mỗi ghế 4 học sinh thì 7 học sinh không có chổ, vì vậy ta có phương trình \(4x+7=y\)\(\Leftrightarrow y-4x=7\)(1)
Nếu xếp mỗi ghế 5 học sinh thì còn thừa 1 ghế, nên ta có phương trình \(\frac{y}{5}+1=x\Leftrightarrow y+5=5x\Leftrightarrow5x-y=5\)(2)
Từ (1) và (2) ta có hệ phương trình \(\hept{\begin{cases}y-4x=7\\5x-y=5\end{cases}}\Leftrightarrow\hept{\begin{cases}y=4x+7\\5x-\left(4x+7\right)=5\end{cases}}\Leftrightarrow\hept{\begin{cases}y=4x+7\\x=12\left(nhận\right)\end{cases}}\Leftrightarrow\hept{\begin{cases}y=55\left(nhận\right)\\x=12\end{cases}}\)
Vậy lớp có 12 ghế và 55 học sinh.
\(\left(2x-3\right)\left(y-4\right)=12\)
\(\Rightarrow2x-3;y-4\inƯ\left(12\right)=\left\{\pm1;\pm2;\pm3;\pm4;\pm6;\pm12\right\}\)
2x - 3 | 1 | -1 | 2 | -2 | 3 | -3 | 4 | -4 | 6 | -6 | 12 | -12 |
y - 4 | 12 | -12 | 6 | -6 | 4 | -4 | 3 | -3 | 2 | -2 | 1 | -1 |
x | 2 | 1 | 5/2 | 1/2 | 3 | 0 | 7/2 | -1/2 | 9/2 | -3/2 | 15/2 | -9/2 |
y | 16 | -8 | ktm | ktm | 8 | 0 | ktm | ktm | ktm | ktm | ktm | ktm |
câu a đáp án bằng 1
câu b đáp án bằng 11
mik hc lớp 9 kb có đk nha bn
a) \(\left(\sqrt[3]{2}-1\right)\left(\sqrt[3]{4}+\sqrt[3]{2}+1\right).\)
\(=\left(\sqrt[3]{2}\right)^3-1^3\)
\(=2-1\)
\(=1\)
b) \(\left(\sqrt[3]{3}+2\right)\left(\sqrt[3]{9}-2\sqrt[3]{3}+4\right)\)
\(=\left(\sqrt[3]{3}\right)^3+2^3\)
\(=3+8\)
\(=11\)
a) \(M=\sqrt[3]{7+5\sqrt{2}}\)
Ta có:
Vì \(7+5\sqrt{2}=\left(\sqrt{2}\right)^3+1+3\sqrt{2}.1\left(\sqrt{2}+1\right)=\left(\sqrt{2}+1\right)^3\)
Nên \(M=\sqrt[3]{\left(\sqrt{2}+1\right)^3}=\sqrt{2}+1\)
b) \(N=\sqrt[3]{6\sqrt{3}-10}\)
Ta có:
Vì \(6\sqrt{3}-10=\left(\sqrt{3}\right)^3-1^3-3\sqrt{3}.1\left(\sqrt{3}-1\right)=\left(\sqrt{3}-1\right)^3\)
Nên \(N=\sqrt[3]{\left(\sqrt{3}-1\right)^3=\sqrt{3}-1}\)
xem gi
co ban nho cua toi
may bi loi unikey thong cam nha moi nguoi
hihi
a) \(\sqrt[3]{x}< 2\Leftrightarrow\left(\sqrt[3]{x}\right)^3< 2^3\Leftrightarrow x< 8\)
b) \(\sqrt[3]{2x-1}>-3\Leftrightarrow\left(\sqrt[3]{2x-1}\right)^3>\left(-3\right)^3\Leftrightarrow2x-1>-27\Leftrightarrow2x>-26\Leftrightarrow x>-13\)
c) \(\sqrt[3]{2-3x}\le1\Leftrightarrow\left(\sqrt[3]{2-3x}\right)^3\le1\Leftrightarrow2-3x\le1\Leftrightarrow3x\ge1\Leftrightarrow x\ge\frac{1}{3}\)
d) \(\sqrt[3]{3-4x}\ge5\Leftrightarrow\left(\sqrt[3]{3-4x}\right)^3\ge5^3\Leftrightarrow3-4x\ge125\Leftrightarrow4x\le-122\Leftrightarrow x\le-\frac{61}{2}\)
a) \(\hept{\begin{cases}\left(x+1\right)\left(y+1\right)=8\\x\left(x+1\right)+y\left(y+1\right)+xy=17\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x+y+xy=7\\x^2+y^2+x+y+xy=17\end{cases}}\)
Dat \(\hept{\begin{cases}xy=P\\x+y=S\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}S+P=7\\S^2+S-P=17\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}P=7-S\\S^2+S-\left(7-S\right)=17\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}P=7-S\\S^2+2S=24\end{cases}}\)
\(\hept{\begin{cases}S=-6\\P=13\\S=4;P=3\end{cases}}\)
b)
a) x=\(\sqrt[3]{2}\) b x=\(\sqrt[3]{-3}\) c) x=0,2 d)x=21 e) x=15 f) x=3