K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 4 2019

a,

Ta có đenta'=[-(m+2)]^2-6m-1

                 =m^2+4m+4-6m-1

                 =m^2-2m+3

                 =(m-1)^2+2>0

vậy phương trình có 2 no pb với mọi m

6 tháng 4 2019

Cho mình xin cả cách làm nhé !

6 tháng 4 2019

(x + 1) + (x + 4) + (x + 7) + .... + (x + 28) = 195

10x + ( 1 + 4 + 7 + ... + 28 ) = 195

10x + 145            = 195

10x                       = 195 - 145         

10x                       = 50

x                          = 50 : 10

x                           = 5    

6 tháng 4 2019

nhanh lên nhé, sáng mai đưa cô rồi

6 tháng 4 2019

mày hok ngu vl

7 tháng 4 2019

Vì FH và ME cùng vuông góc vs AC nên FH//ME

Xét 2  tam giác vuông FHM và EMH có:

        MH cạnh chung

       \(\widehat{FHM}\)=\(\widehat{EMH}\)(vì so le)

=>\(\Delta\)FHM=\(\Delta\)EMH(CH-GN)

=>ME=FH


A B C M D E H F

6 tháng 4 2019

4 quả táo và 6 quả đào hơn 4 quả táo và 3 quả đào là :

     6   -   3   =   3 quả đào

3 quả đào có giá là :

   16  -  10   =  6 đô la

1 quả đào có giá là :

   6   :   3   =   2  đô la

~ Thiên mã ~

   

6 tháng 4 2019

Vi 4 qua tao + 3 qua dao = 10 do 

    4 qua tao  + 6 qua dao= 16 do 

suy ra 3 qua dao = 6 do

=> 1 qua dao =2 do

bai nay khong kho chi can ban chu y de bai la lam duoc

Chuc ban hoc tot!

5 tháng 10 2020

Đặt \(\hept{\begin{cases}b+c=x\\a+c=y\\a+b=z\end{cases}}\)với x,y,z dương và \(a=\frac{y+z-x}{2};b=\frac{x+z-y}{2};c=\frac{x+y-z}{2}\)

Ta có \(\frac{a}{1-a}+\frac{b}{1-b}+\frac{c}{1-c}=\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}=\frac{y+z-x}{2x}+\frac{x+z-y}{2y}+\frac{x+y-z}{2z}\)

\(=\frac{1}{2}\left(\frac{y}{x}+\frac{x}{y}\right)+\frac{1}{2}\left(\frac{z}{x}+\frac{x}{z}\right)+\frac{1}{2}\left(\frac{z}{y}+\frac{y}{z}\right)-\frac{3}{2}\ge1+1+1-\frac{3}{2}=\frac{3}{2}\)

Dấu "=" xảy ra khi và chỉ khi x=y=z

Với x=y=z thì a=b=c => tam giác ABC đều

26 tháng 10 2020

Cách khác :

Chu vi tam giác bằng 1 suy ra \(a+b+c=1\Rightarrow\hept{\begin{cases}1-a=b+c\\1-b=c+a\\1-c=a+b\end{cases}}\)

Nên đẳng thức viết lại thành: \(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\)\(=\frac{3}{2}\)

Ta sẽ chứng minh \(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\ge\frac{3}{2}\)

Thật vậy, áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel: 

\(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}=\frac{a^2}{ab+ca}+\frac{b^2}{bc+ab}+\frac{c^2}{ac+bc}\ge\frac{\left(a+b+c\right)^2}{2\left(ab+bc+ca\right)}\)

\(\ge\frac{3\left(ab+bc+ca\right)}{2\left(ab+bc+ca\right)}=\frac{3}{2}\)

Dấu "=" xảy ra khi \(a=b=c\)

Vậy tam giác ABC đều.