Cho a>=1, b>=1.Cm: \(a\sqrt{b-1}+b\sqrt{a-1}=< ab\)\(ab\)
Thank trước nha.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sửa để: CM: \(\frac{a^2+\left(a-c\right)^2}{b^2+\left(b-c\right)^2}=\frac{a-c}{b-c}\) Điều kiện \(a;b\ne c\) \(a+b\ne c\)
\(\frac{c^2}{2}+ab-ac-bc=0\)
\(\Leftrightarrow c^2+2ab-2ac-2bc=0\)
\(\Leftrightarrow c^2=2c^2+2ab-2ac-2bc\)
\(\Leftrightarrow c^2=2\left(a-c\right)\left(b-c\right)\)
Lại có: \(a^2+\left(a-c\right)^2\)
\(=2a^2-2ac+c^2\)
\(=2a\left(a-c\right)+2\left(a-c\right)\left(b-c\right)\)
\(=2\left(a-c\right)\left(a+b-c\right)\)
Tương tự: \(b^2+\left(b-c\right)^2=2\left(b-c\right)\left(a+b-c\right)\)
Thay vô ta có:
\(\frac{a^2+\left(a-c\right)^2}{b^2+\left(b-c\right)^2}=\frac{2\left(a-c\right)\left(a+b-c\right)}{2\left(b-c\right)\left(a+b-c\right)}=\frac{a-c}{b-c}\)
Cảm ơn bạn ạ, giáo viên ghi sai đề nên mình giải mãi không ra
đặt \(x+y=a;xy=b\Rightarrow x^2+y^2=a^2-2b\)
Nên ta có hệ pt có dạng
\(\hept{\begin{cases}a^2-2b+a=8\\a^2-2b+b=7\end{cases}\Leftrightarrow}\hept{\begin{cases}a^2-2b+a=8\\a^2-b=7\end{cases}}\)
trừ 2 vế của 2 pt, ta có
\(a-b=1\Rightarrow b=a-1\)
tháy b=a-1 vào pt (2), ta có
\(a^2-a+1=7\Leftrightarrow a^2-a-6=0\Leftrightarrow\left(a-3\right)\left(a+2\right)=0\)
đến đây bạn tìm được a rồi tính b, sau đó ra được xy và x+y rồi dễ dàng giải tiếp
^_^
viết lại đề nhé chứng minh \(a\sqrt{b-1}+b\sqrt{a-1}\le ab\)
Áp dụng bđt cô si, ta có \(\sqrt{b-1}\le\frac{b-1+1}{2}=\frac{b}{2}\Rightarrow a\sqrt{b-1}\le\frac{ab}{2}\)
tương tự, có \(b\sqrt{a-1}\le\frac{ab}{2}\)
+ 2 vế , ta có \(a\sqrt{b-1}+b\sqrt{a-1}\le ab\) (ĐPCM)
dấu = xảy ra <=>a=b=2
^_^