K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 12 2018

ĐKXĐ: \(x\ne0;x\ne\frac{1}{2}\)

\(\frac{2x^2+1}{4x^2-2x}+\frac{3}{2x}-\frac{3-3x}{2x-1}\)

\(=\frac{2x^2+1}{4x^2-2x}+\frac{3}{2x}-\frac{6x-6x^2}{4x^2-2x}\)

\(=\frac{8x^2-6x+1}{4x^2-2x}+\frac{3}{2x}=\frac{8\left(x-\frac{1}{2}\right)\left(x-\frac{1}{4}\right)}{4x\left(x-\frac{1}{2}\right)}+\frac{3}{2x}\)

\(=\frac{8x-2}{4x}+\frac{3}{2x}=\frac{8x-2}{4x}+\frac{6}{4x}=\frac{8x-2+6}{4x}\)

\(=\frac{8x+4}{4x}=1+\frac{4x+4}{4x}=2+\frac{4}{4x}=2+\frac{1}{x}\)

12 tháng 12 2018

Ơ bài t có gì sai????lại là bọn dis dạo nữa cơ à? Ok,ok cho chúng m dis,t cx méo quan tâm.Và t biết bài t đúng!

12 tháng 12 2018

\(\frac{x^2+4y^2-4xy-4}{2x^2-4xy+4x}=\frac{\left(x^2-4xy+4y^2\right)-4}{2x.\left(x-2y+2\right)}.\)

\(=\frac{\left(x-2y\right)^2-4}{2x.\left(x-2y+2\right)}=\frac{\left(x-2y+2\right).\left(x-2y-2\right)}{2x.\left(x-2y+2\right)}\)

\(=\frac{x-2y-2}{2x}\)

chúc bn học tốt!
 

12 tháng 12 2018

Ta có : \(4x^2+2y^2+2z^2-4xy-4xz+2yz-6y-10z+34=0\)

    \(\Leftrightarrow\left(4x^2+y^2+z^2-4xy-4xz+2yz\right)+\left(y^2-6y+9\right)+\left(z^2-10z+25\right)=0\)

   \(\Leftrightarrow\left(2x-y-z\right)^2+\left(y-3\right)^2+\left(z-5\right)^2=0\)

Do \(\hept{\begin{cases}\left(2x-y-z\right)^2\ge0\\\left(y-3\right)^2\ge0\\\left(z-5\right)^2\ge0\end{cases}\Rightarrow VT\ge0}\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}2x-y-z=0\\y-3=0\\z-5=0\end{cases}\Leftrightarrow\hept{\begin{cases}2x=y+z\\y=3\\z=5\end{cases}\Leftrightarrow}\hept{\begin{cases}x=4\\y=3\\z=5\end{cases}}}\)

Khi đó \(P=\left(4-4\right)^{2018}+\left(3-4\right)^{2018}+\left(5-4\right)^{2018}\)

               \(=0+\left(-1\right)^{2018}+1^{2018}\)

               \(=2\)

12 tháng 12 2018

 Câu trả lời hay nhất:  giữ chữ tín: bạn sẽ bảo vệ danh dự của mình khi bị người khác nghi ngờ, bạn còn giải thích cho người ta hiểu tại sao bạn lại làm vậy và làm vì cái gì, để cho người ta vững lòng tin nơi bạn

hok tốt

12 tháng 12 2018
Cho tam giác ABC vuông tại A BD = DC D thuộc BC M đối xứng với A qua D K là khoảng cách từ D đến BC chứng minh AM nhân MC = BC nhân MK