Khi chơi cá ngựa, thay vì gieo 1 con xúc xắc,ta gieo cả hai con xúc xắc cùng một lúc thì điểm thấp nhất là 2,cao nhất là 12.Các điểm khác là 3,4,5,6,...,11.Hãy lập bảng tần số về khả năng xuất hiện mỗi loại điểm nói trên? Tính tần xuất của mỗi loại điểm đó
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x5 + 3q = -px mà p là số nguyên tố lên x5 +3q \(⋮x=>3q⋮x=>3⋮x\)(vì q là số nguyên tố)
=> x=1;-1 ; 3; -3
x=1 =>1+ p + 3q >0 (loại); x= 3 tương tự cũng lọai
x=-1 => -1-p +3q=0 <=> 3q -1 = p
xét q =1 => p =2 (thỏa mãn)
xét q = 2 => p=5 (thỏa mãn)
với q>2 mà q là số nguyên tố nên q phải là số lẻ => 3q là số lẻ => 3q -1 là số chẵn => p là số chẵn lớn hơn 2 => p không là số nguyên tố (loại)
xét x = -3 => -3 -3p + 3q =0 => q-1= p
xét tương tự q= 2 => p=1 thỏa mãn
q=3 => p=2 thỏa mãn
q>3 => q là só nguyên tô lẻ => q-1 là số chắn lớn hơn 2 => p là số chắn >2 => không là số nguyên tố(loại)
vậy ta có các nghiệm (x; p; q) = ( -1; 2; 1); (-1; 5; 2); (-3; 1; 2); (-3; 2; 3)
Bài bạn làm sai rồi ( tỉ lệ sai : 100%) dễ thấy vì q là số nguyên tố nên xét TH q =2 thôi xét q=1 làm gì ? Vì 1 ko phải scp . Lỗi thứ 2 là : TH x=-3 bạn suy ra -3-3p+3q=0 mà đề bài cho x^5 + px+3q=0 .Do đó vô lý.
CÁ TRÊ tra bài nhớ cho mình đúng nha
Theo bài ra ta có :
\(\frac{2a+b+c+d}{a}=\frac{a+2b+c+d}{b}=\frac{a+b+2c+d}{c}=\frac{a+b+c+2d}{d}\)
\(\Rightarrow\frac{2a+b+c+d}{a}-1=\frac{a+2b+c+d}{b}-1=\frac{a+b+2c+d}{c}-1=\frac{a+b+c+2d}{d}-1\)
\(\Rightarrow\frac{a+b+c+d}{a}=\frac{a+b+c+d}{b}=\frac{a+b+c+d}{c}=\frac{a+b+c+d}{d}\)
Nếu a + b + c + d = 0
\(\Rightarrow\frac{0}{a}=\frac{0}{b}=\frac{0}{c}=\frac{0}{d}\)
\(\Rightarrow\orbr{\begin{cases}a=b=c=d\\a\ne b\ne c\ne d\end{cases}}\)(loại)
Nếu a + b + c + d \(\ne\)0
=> \(\frac{1}{a}=\frac{1}{b}=\frac{1}{c}=\frac{1}{d}\)
=> a = b = c = d (đpcm)
Ta có: \(\frac{x}{4}=\frac{y}{6}=\frac{z}{8}\) => \(\frac{2x}{8}=\frac{y}{6}=\frac{3z}{24}\)
Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{2x}{8}=\frac{y}{6}=\frac{3z}{24}=\frac{2x+y-3z}{8+6-24}=\frac{20}{-10}=-2\)
=> \(\hept{\begin{cases}\frac{x}{4}=-2\\\frac{y}{6}=-2\\\frac{z}{8}=-2\end{cases}}\) => \(\hept{\begin{cases}x=-2.4=-8\\y=-2.6=-12\\z=-2.8=-16\end{cases}}\)
Vậy ...
\(\frac{5^{102}\cdot9^{1000}}{3^{2018}\cdot25^{50}}=\frac{5^{102}\cdot3^{2000}}{3^{2018}\cdot5^{100}}=\frac{5^2}{3^{18}}\)