giải hệ phương trình sau :
1) \(\hept{\begin{cases}x\sqrt{5}-\left(1+\sqrt{3}\right)y=1\\\left(1-\sqrt{3}\right)x+y\sqrt{5}=1\end{cases}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đk : x >= 1
Đặt : \(\sqrt[3]{2-x}=a\) ; \(\sqrt{x-1}=b\)=> a^3+b^2 = 1 (1)
pt => a+b = 1 => b = 1-a
Thay b=1-a vào (1) thì:
1 = a^3+a^2-2a+1
<=> a^3+a^2-2a = 0
<=> a.(a^2+a-2) = 0
<=> a=0 hoặc a^2+a-2 = 0
<=> a=0 hoặc x=1 hoặc a=-2
<=> \(\sqrt[3]{2-x}=0\)hoặc \(\sqrt[3]{2-x}\)= 1 hoặc \(\sqrt[3]{2-x}\)= -2
<=> x=2 hoặc x=1 hoặc x=-10
<=> x=2 hoặc x=1 ( vì x >= 1 )
Vậy pt có tập nghiệm S = {1;2}
Tk mk nha
Sắp bận nặng rồi mình gợi ý thôi nhé
\(pt\left(1\right)\Leftrightarrow-\left(x^2-y\right)\left(x^4+x^2y+2x^2+y^2\right)=0\)
Với mọi n thuộc N * ta có :
\(\sqrt{1+\frac{1}{n^2}+\frac{1}{\left(n+1\right)^2}}=\sqrt{\frac{n^2\left(n+1\right)^2+\left(n+1\right)^2+n^2}{n^2\left(n+1\right)^2}}=\sqrt{\frac{n^4+2n^3+n^2+2n^2+2n+1}{n^2\left(n+1\right)^2}}\)
\(=\sqrt{\frac{n^4+2n^3+3n^2+2n+1}{n^2\left(n+1\right)^2}}=\sqrt{\frac{n^4+n^2+1+2n^3+2n+2n^2}{n^2\left(n+1\right)^2}}\)
\(=\sqrt{\frac{\left(n^2+n+1\right)^2}{n^2\left(n+1\right)^2}}=\frac{n^2+n+1}{n\left(n+1\right)}=1+\frac{1}{n\left(n+1\right)}=1+\frac{1}{n}-\frac{1}{n+1}\)
Áp dụng vào ta được :
\(A=\left(1+1-\frac{1}{2}\right)+\left(1+\frac{1}{2}-\frac{1}{3}\right)+\left(1+\frac{1}{3}-\frac{1}{4}\right)+....+\left(1+\frac{1}{2011}-\frac{1}{2012}\right)\)
\(=2012-\frac{1}{2012}=\frac{2012^2-1}{2012}\)
\(1)\hept{\begin{cases}x\sqrt{5}-\left(1+\sqrt{3}\right)y=1\left(1\right)\\\left(1-\sqrt{3}\right)x+y\sqrt{5}=1\left(2\right)\end{cases}}\)
Từ (1) ta rút ra được : \(x=\frac{1+\left(1+\sqrt{3}\right)y}{\sqrt{5}}\left(3\right)\)
Thay (3) vào phương trinh (2) ta được :
\(\frac{1+\left(1+\sqrt{3}\right)y}{\sqrt{5}}.\left(1-\sqrt{3}\right)+y\sqrt{5}=1\)
\(\Leftrightarrow\frac{1-\sqrt{3}+\left(1+\sqrt{3}\right)\left(1-\sqrt{3}\right)y+5y}{\sqrt{5}}=1\)
\(\Leftrightarrow1-\sqrt{3}-2y+5y=\sqrt{5}\)
\(\Leftrightarrow3y=\sqrt{3}+\sqrt{5}-1\)
\(\Leftrightarrow y=\frac{\sqrt{3}+\sqrt{5}-1}{3}\)vào (3) ta được :
\(x=\frac{1}{\sqrt{5}}.\left[1+\left(1+\frac{1}{\sqrt{3}}\right).\frac{\sqrt{3}+\sqrt{5}-1}{3}\right]\)
\(x=\frac{\sqrt{3}+\sqrt{5}+1}{3}\)
Vậy hệ phương trình có nghiệm \(\left(\frac{\sqrt{3}+\sqrt{5}+1}{3};\frac{\sqrt{3}+\sqrt{5}-1}{3}\right)\)