\(\dfrac{4^5.9^4}{8^3.27^3}\);\(\dfrac{4^{20}.3^{35}}{2^{37}.27^{12}}\)\(;\dfrac{5^4.20^4}{25^5.4^5};\dfrac{2^{15}.9^4}{6^6.8^3}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = 0,(36) - 0,(71)
= 36/99 - 71/99
= -35/99
B = [3,(12) - 2,(5)] : 0,(14)
= (103/33 - 203/99) : 14/99
= 106/99 : 14/99
= 53/7
\(A=0,\left(36\right)-0,\left(71\right)\)
\(A=\dfrac{36}{99}-\dfrac{71}{99}=-\dfrac{35}{99}=-0,\left(35\right)\)
\(B=\left[3,\left(12\right)-2,\left(5\right)\right]:0,\left(14\right)\)
\(B=\left(\dfrac{3\cdot99+12}{99}-\dfrac{2\cdot9+5}{9}\right):\dfrac{14}{99}\)
\(B=\left(\dfrac{309}{99}-\dfrac{23}{9}\right):\dfrac{14}{99}\)
\(B=\dfrac{56}{99}:\dfrac{14}{99}\)
\(B=4\)
\(\dfrac{79}{11}=7+\dfrac{2}{11}=7+\dfrac{18}{99}\)
\(=7,\left(18\right)\)
\(\dfrac{91}{37}=2+\dfrac{17}{37}=2+\dfrac{459}{999}\)
\(=2,\left(459\right)\)
Chuyển đổi cụ thể:
\(\dfrac{79}{11}=\dfrac{79\cdot9}{11\cdot9}=\dfrac{711}{99}=7\dfrac{18}{99}\)
\(=7,\left(18\right)\)
\(\dfrac{1}{6}=0,1\left(6\right)\)
\(\dfrac{1}{3}=0,\left(3\right)\)
\(\dfrac{2}{3}=0,\left(6\right)\)
a)\(\dfrac{27^4.4^3}{9^5.8^2}\)
=\(\dfrac{3^{12}.2^6}{3^{10}.2^6}\)
=3\(^2\)=9
b)\(\dfrac{3^{29}.4^{16}}{27^9.8^{11}}\)
=\(\dfrac{3^{29}.2^{32}}{3^{27}.2^{33}}\)
=\(\dfrac{9}{2}\)
\(\dfrac{27^4.4^3}{9^5.8^2}=\dfrac{\left(3^3\right)^4.\left(2^2\right)^3}{\left(3^2\right)^5.\left(2^3\right)^2}=\dfrac{3^{12}.2^6}{3^{10}.2^6}=\dfrac{3^{12}}{3^{10}}=3^2=9\)
_________
\(\dfrac{3^{29}.4^{16}}{27^9.8^{11}}=\dfrac{3^{29}.\left(2^2\right)^{16}}{\left(3^3\right)^9.\left(2^3\right)^{11}}=\dfrac{3^{29}.2^{32}}{3^{27}.2^{33}}=\dfrac{1}{3^2.2}=\dfrac{1}{9.2}=\dfrac{1}{18}\)
a) Để tính góc zOm, ta biết rằng tia Om là tia phân giác của góc zOy. Vì góc zOy là 60 độ, nên góc zOm cũng là 60/2 = 30 độ.
b) Để xác định xem tia Ox có phải là tia phân giác của góc yOn hay không, ta cần vẽ tia On là tia đối của tia Om. Sau đó, ta kiểm tra xem tia Ox có đi qua điểm phân giác của góc yOn hay không.
a) Do Om là tia phân giác của ∠xOz
⇒ ∠xOm = ∠zOm = xOz : 2 = 60⁰ : 2 = 30⁰
b) Ta có:
∠xOz + ∠yOz = 180⁰ (kề bù)
⇒ ∠yOz = 180⁰ - ∠xOz
= 180⁰ - 60⁰
= 120⁰
Do On là tia phân giác của ∠zOy
⇒ ∠yOn = ∠zOn = zOy : 2 = 120⁰ : 2 = 60⁰
c) ∠mOn = ∠mOz + ∠zOn
= 30⁰ + 60⁰
= 90⁰
Lời giải:
$(\frac{1}{3})^{2x-1}=\frac{1}{243}=(\frac{1}{3})^5$
$\Rightarrow 2x-1=5$
$\Rightarrow 2x=6$
$\Rightarrow x=3$
\(\left(\dfrac{1}{3}\right)^{2x-1}=\dfrac{1}{243}\)
\(\left(\dfrac{1}{3}\right)^{2x-1}=\left(\dfrac{1}{3}\right)^5\)
=> \(2x-1=5\)
\(2x=6\)
\(x=3\)
2.(x-3)+3x+0.5=\(\dfrac{3}{4}\)
4x+2+4x=272
(1,2-5x).(2\(\dfrac{1}{8}\) +1/2 x)=0
GIÚP MÌNH VỚI !!!!
\(2\left(x-3\right)+3x+0,5=\dfrac{3}{4}\\ \Leftrightarrow2x-6+3x+\dfrac{1}{2}=\dfrac{3}{4}\\ \Leftrightarrow x\left(2+3\right)=\dfrac{3}{4}-\dfrac{1}{2}+6\\ \Leftrightarrow5x=\dfrac{25}{4}\\ \Leftrightarrow x=\dfrac{25}{4}:5=\dfrac{5}{4}\\ ---\\ 4^{x+2}+4^x=272\\ \Leftrightarrow4^x\left(4^2+1\right)=272\\ \Leftrightarrow4^x.17=272\\ \Leftrightarrow4^x=\dfrac{272}{17}=16=4^2\\ Vậy:x=2\\ ----\\ \left(1,2-5x\right)\left(2\dfrac{1}{8}+\dfrac{1}{2}x\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}1,2-5x=0\\2,125+0,5x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}5x=1,2\\0,5x=-2,125\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1,2}{5}=0,24\\x=\dfrac{-2,125}{0,5}=-4,25\end{matrix}\right.\)
a) \(2\left(x-3\right)+3x+0,5=\dfrac{3}{4}\)
\(\Rightarrow2x-6+3x+\dfrac{1}{2}=\dfrac{3}{4}\)
\(\Rightarrow5x-6=\dfrac{3}{4}-\dfrac{1}{2}\)
\(\Rightarrow5x-6=\dfrac{1}{4}\)
\(\Rightarrow5x=\dfrac{1}{4}+6\)
\(\Rightarrow5x=\dfrac{25}{4}\)
\(\Rightarrow x=\dfrac{25}{4}:5\)
\(\Rightarrow x=\dfrac{5}{4}\)
b) \(4^{x+2}+4^x=272\)
\(\Rightarrow4^x\cdot4^2+4^x\cdot1=272\)
\(\Rightarrow4^x\cdot\left(16+1\right)=272\)
\(\Rightarrow4^x\cdot17=272\)
\(\Rightarrow4^x=16\)
\(\Rightarrow4^x=4^2\)
\(\Rightarrow x=2\)
c) \(\left(1,2-5x\right)\left(2\dfrac{1}{8}+\dfrac{1}{2}x\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}1,2-5x=0\\\dfrac{15}{8}+\dfrac{1}{2}x=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}5x=1,2\\\dfrac{1}{2}x=-\dfrac{15}{8}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{1,2}{5}\\x=-\dfrac{15}{8}:\dfrac{1}{2}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{6}{25}\\x=-\dfrac{15}{4}\end{matrix}\right.\)
\(\dfrac{4^5\cdot9^4}{8^3\cdot27^3}=\dfrac{\left(2^2\right)^5\cdot\left(3^2\right)^4}{\left(2^3\right)^3\cdot\left(3^3\right)^3}=\dfrac{2^{10}\cdot3^8}{2^9\cdot3^9}=\dfrac{2}{3}\)
\(\dfrac{4^{20}\cdot3^{35}}{2^{37}\cdot27^{12}}=\dfrac{\left(2^2\right)^{20}\cdot3^{35}}{2^{37}\cdot\left(3^3\right)^{12}}=\dfrac{2^{40}\cdot3^{35}}{2^{37}\cdot3^{36}}=\dfrac{2^3}{3}\)
\(\dfrac{5^4\cdot20^4}{25^5\cdot4^5}=\dfrac{5^4\cdot5^4\cdot4^4}{5^5\cdot5^5\cdot4^5}=\dfrac{1}{5^2\cdot4}=\dfrac{1}{100}\)
\(\dfrac{2^{15}\cdot9^4}{6^6\cdot8^3}=\dfrac{2^{15}\cdot\left(3^2\right)^4}{2^6\cdot3^6\cdot\left(2^3\right)^3}=\dfrac{2^{15}\cdot3^8}{2^6\cdot3^6\cdot2^9}=3^2\)