(\(\frac{2}{-3}\))10 :( \(\frac{2}{-3}\))10 + |-\(\frac{1}{3}\)|+ 20170 - (-1)2018
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a/\left(3x+\frac{1}{2}\right)^3=\left(-\frac{3}{2}\right)^3\Leftrightarrow3x+\frac{1}{2}=-\frac{3}{2}\Leftrightarrow x=-\frac{2}{3}\)
\(b/-3x^2+15=0\Leftrightarrow3\left(5-x^2\right)=0\Leftrightarrow5-x^2=0\Leftrightarrow x=\pm\sqrt{5}\)
ADTCDTSBN:
\(\frac{a+b}{b+c}=\frac{b+c}{c+a}=\frac{c+a}{a+b}=\frac{2\left(a+b+c\right)}{2\left(a+b+c\right)}=1\)
\(\Rightarrow\hept{\begin{cases}a+b=b+c\\b+c=c+a\\c+a=a+b\end{cases}}\Leftrightarrow\hept{\begin{cases}a=c\\a=b\\b=c\end{cases}}\)
\(\Rightarrow a=b=c\left(đpcm\right)\)
Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)
\(\Rightarrow\frac{2019a^2+2020b^2}{2019a^2-2020b^2}=\frac{2019b^2k^2+2020b^2}{2019b^2k^2-2020b^2}\)
\(=\frac{2019k^2+2020}{2019k^2-2020}\)(1)
và\(\Rightarrow\frac{2019c^2+2020d^2}{2019c^2-2020d^2}=\frac{2019d^2k^2+2020d^2}{2019d^2k^2-2020d^2}\)
\(=\frac{2019k^2+2020}{2019k^2-2020}\)(2)
Từ (1) và (2) suy ra \(\frac{2019a^2+2020b^2}{2019a^2-2020b^2}\)\(=\frac{2019c^2+2020d^2}{2019c^2-2020d^2}\left(đpcm\right)\)
Gọi S là biểu thức trên
\(S=1+\frac{1}{3}+1-1=1+\frac{1}{3}=\frac{4}{3}\)