Tìm Max: a,A=-x^2-2y^2-2xy+2x-2y-15
b,B=-a^2-5b^2-2a+4ab+10b-6
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x^{24}+x^{20}+...+x^4+1}{x^{26}+x^{24}+...+x^2+1}=\frac{x^{24}+x^{20}+...+x^4+1}{\left(x^{24}+x^{20}+...+x^4+1\right)+\left(x^{26}+x^{22}+...+x^2\right)}\)
\(=1-\frac{x^2\left(x^{24}+x^{20}+...+x^4+x^1\right)}{\left(1+x^2\right)\left(x^{24}+2^{20}+...+x^4+1\right)}=1-\frac{x^2}{1+x^2}\)
\(=\frac{1+x^2-x^2}{1+x^2}=\frac{1}{1+x^2}\)
Hoặc cách khác:
\(\frac{x^{24}+x^{20}+...+x^4+1}{x^{26}+x^{24}+...+x^2+1}=\frac{x^{24}+x^{20}+...+x^4+1}{\left(x^{24}+x^{20}+...+x^4+1\right)+x^2\left(x^4+x^{20}+...+x^4+1\right)}\)
\(=\frac{x^{24}+x^{20}+...+x^4+1}{\left(x^2+1\right)\left(x^{24}+x^{20}+...+x^4+1\right)}=\frac{1}{x^2+1}\)
\(M=\frac{x^2+2x-9}{x-3}\)
\(=\frac{x^2-6x+9+8x-24+6}{x-3}\)
\(=\frac{\left(x-3\right)^2+8\left(x-3\right)+6}{x-3}\)
\(=x-3+8+\frac{6}{x-3}\)
Do \(x>3\Rightarrow x-3>0\)
Áp dụng BĐT Cauchy , ta có :
\(x-3+\frac{6}{x-3}\ge2\sqrt{\left(x-3\right).\frac{6}{x-3}}=2\sqrt{6}\)
\(\Rightarrow M=x-3+\frac{6}{x-3}+8\ge2\sqrt{6}+8\)
\(\Rightarrow M\ge\sqrt{24}+8\)
Dấu " = " xảy ra \(\Leftrightarrow x-3=\frac{6}{x-3}\Leftrightarrow\left(x-3\right)^2=6\)
\(\Leftrightarrow\orbr{\begin{cases}x-3=\sqrt{6}\\x-3=-\sqrt{6}\end{cases}\Leftrightarrow\orbr{\begin{cases}x=3+\sqrt{6}\left(TM\right)\\x=3-\sqrt{6}\left(L\right)\end{cases}}}\)
Vậy Min M là : \(\sqrt{24}+8\Leftrightarrow x=3+\sqrt{6}\)
Ta có :
2(xy - x^2 - y + 1008) = y^2 + 2018
<=> 2xy - 2x^2 - 2y + 2016 = y^2 + 2018
<=> 2xy - 2x^2 - 2y = y^2 + 2
<=> 2xy - 2x^2 - 2y - y^2 - 2 = 0
<=> -(2x^2 - 2xy + y^2/2) - y^2/2 - 2y - 2 = 0
<=> -2(x^2 - xy + y^2/4) - 2(y^2/4 + y + 1) = 0
<=> -2(x-y/2)^2 - 2(y/2 + 1)^2 = 0
<=> 2(x-y/2)^2 + 2(y/2 + 1)^2 = 0
Dấu " = " xảy ra <=> x - y/2 = 0 ; y/2 + 1 = 0
<=> x = y/2 ; y = -2
<=> x = -1 ; y = -2
Vậy x = -1 ; y = -2
Ta có :
2(xy - x^2 - y + 1008) = y^2 + 2018
<=> 2xy - 2x^2 - 2y + 2016 = y^2 + 2018
<=> 2xy - 2x^2 - 2y = y^2 + 2
<=> 2xy - 2x^2 - 2y - y^2 - 2 = 0
<=> -(2x^2 - 2xy + y^2/2) - y^2/2 - 2y - 2 = 0
<=> -2(x^2 - xy + y^2/4) - 2(y^2/4 + y + 1) = 0
<=> -2(x-y/2)^2 - 2(y/2 + 1)^2 = 0
<=> 2(x-y/2)^2 + 2(y/2 + 1)^2 = 0
Dấu " = " xảy ra <=> x - y/2 = 0 ; y/2 + 1 = 0
<=> x = y/2 ; y = -2
<=> x = -1 ; y = -2
Vậy x = -1 ; y = -2
Ta có :
x/x^2 + x + 1 = -2/3
<=> -2x^2 - 2x - 2 = 3x
<=> -2x^2 - 5x - 2 = 0
<=> -2(x^2 + 5/2x + 1) = 0
<=> x^2 + 5/2x + 1 = 0
<=> x^2 + 2x.5/4 + 25/16 - 9/16 = 0
<=> (x+5/4)^2 = 9/16
<=> x + 5/4 = 3/4 hoặc x + 5/4 = -3/4
<=> x = -1/2 hoặc x = -2
Sau đấy thay vào ( easy )
\(A=\left(\frac{1}{x-1}-\frac{2x}{x\left(x^2+1\right)-\left(x^2+1\right)}\right):\left(\frac{x^2+1-2x}{x^2+1}\right)\)
\(A=\left(\frac{1}{x-1}-\frac{2x}{\left(x-1\right)\left(x^2+1\right)}\right).\frac{x^2+1}{x^2+1-2x}\)
\(A=\frac{x^2+1-2x}{\left(x-1\right)\left(x^2+1\right)}\frac{x^2+1}{x^2+1-2x}\)
\(A=\frac{1}{x-1}\)