K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\left(x-2\right).\left(x+2\right)=1\)

\(\Leftrightarrow x^2-4=1\)

\(\Leftrightarrow x^2=5\)

\(\Leftrightarrow x=\pm\sqrt{5}\)

mình giải đến đây thôi,phần đằng sau mk ko hiểu đề bạn viết sai sai ở đâu ý

16 tháng 2 2022

Ta viết lại bất đẳng thức cần chứng minh là:

\(\frac{a}{\left(a+c\right)\left(b+c\right)}+\frac{b}{\left(a+b\right)\left(c+a\right)}+\frac{c}{\left(c+a\right)\left(a+b\right)}\ge\frac{3}{4}\)

Sử dụng kĩ thuật thêm-bớt trong bất đẳng thức Cô si ta được:

\(\frac{a}{\left(a+c\right)\left(b+c\right)}+\frac{a\left(a+c\right)}{8}+\frac{a\left(b+c\right)}{8}\ge\frac{3a}{4}\)

\(\Rightarrow\frac{a}{\left(a+c\right)\left(b+c\right)}+\frac{a^2+ab+2ac}{8}\ge\frac{3a}{4}\)

Áp dụng tương tự ta được:

\(\frac{b}{\left(a+b\right)\left(c+a\right)}+\frac{b^2+bc+2ab}{8}\ge\frac{3b}{4}\)

\(\frac{c}{\left(b+c\right)\left(a+b\right)}+\frac{c^2+ca+2bc}{8}\ge\frac{3c}{4}\)

Gọi vế trái của bất đẳng thức là A khi đó cộng các vế bất đẳng thức trên ta được:

\(A+\frac{a^2+ab+2ac}{8}+\frac{b^2+bc+2ab}{8}+\frac{c^2+ca+2bc}{8}\ge\frac{3\left(a+b+c\right)}{4}\)

Hay: \(A\ge\frac{9}{4}-\frac{\left(a+b+c\right)^2+\left(ab+bc+ca\right)}{8}\)

\(\ge\frac{9}{4}-\frac{\left(a+b+c\right)^2+\frac{\left(a+b+c\right)^2}{a}}{8}=\frac{3}{4}\)

Đến đây bài toán được chứng minh xong.

15 tháng 2 2022

\(=2\)

15 tháng 2 2022

1 + 1 = 2

Chúc bạn học tốt.

😁😁😁

15 tháng 2 2022

Áp dụng bất đẳng thức Cô si nhưng tình huống này ta bình phương hai vế trước.

Đặt \(A=\frac{x}{y}+\frac{y}{z}+\frac{z}{x}\), khi đó ta được:

\(A^2=\left(\frac{x}{y}+\frac{y}{z}+\frac{z}{x}\right)^2\)

\(=\frac{x^4}{y^2}+\frac{y^4}{z^2}+\frac{z^4}{x^2}+2\left(\frac{x^2y}{z}+\frac{y^2z}{x}+\frac{z^2x}{y}\right)\)

Ta chú ý cách ghép cặp sau:

\(\frac{x^4}{y^2}=\frac{x^2y}{z}+\frac{x^2y}{x}+z^2\ge4x^2\)

\(\frac{y^4}{z^2}+\frac{y^2z}{x}+\frac{y^2z}{x}+x^2\ge4y^2\)

\(\frac{z^4}{x^2}=\frac{z^2x}{y}+\frac{z^2x}{y}+y^2\ge4z^2\)

Cộng theo vế các bất đẳng thức trên ta được:

\(A^2+\left(x^2+y^2+z^2\right)\ge4\left(x^2+y^2+z^2\right)\Leftrightarrow A^2\ge9\Leftrightarrow A\ge3\)hay:

\(\frac{x^2}{y}+\frac{y^2}{z}+\frac{z^2}{x}\ge3\)

Vậy bất đẳng thức đã được chứng minh, đẳng thức xảy ra khi và chỉ khi \(a=b=c=1\)

15 tháng 2 2022
Em hãy hình dung tình huống cho các câu khiến sau: a, Con hãy nhặt những mảnh vụn của chiếc bát vỡ này đi! b, con đừng đi một mình! c, Đề nghị không hút thuốc lá nơi công cộng!
15 tháng 2 2022

Ta thấy  x và y ko đều 

1 x 1

15 tháng 2 2022

Các cạnh bằng nhau

17 tháng 2 2022

M A B C O N D

Gọi \(BC\) cắt \(\left(O;r\right)\) lần thứ hai tại \(N\)\(CD\) là đường kính của \(\left(O;R\right)\)

Do hình chiếu vuông góc của \(O\) trên \(BC\) là trung điểm của \(MN,BC\) nên \(MB=NC\)

Tính đối xứng tâm của đường tròn nên \(NC=AD,NC||AD\) hay \(MB=||AD\)

Suy ra \(AM=DB\). Ta biến đổi:

\(MA^2+MB^2+MC^2=MA^2+\left(MB+MC\right)^2-2MB.MC\)

\(=DB^2+BC^2-2\left(R^2-OM^2\right)=\left(2R\right)^2-2\left(R^2-r^2\right)=2\left(R^2+r^2\right)\)