\(\left(-x^2+x+6\right)\sqrt{x+3}\ge0\)\(0\)
Bài này bình phương có được ko ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(a^3+b^3+c^3=3abc\Rightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)
Do a+b+c khác ) nên:
\(a^2+b^2+c^2-ab-bc-ca=0\)
\(\Leftrightarrow\frac{1}{2}[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2]=0\)
\(\Rightarrow a=b=c\)
Do đó:
Q=\(\frac{a^2+3b^2+5c^2}{\left(a+b+c\right)^2}=\frac{9a^2}{9a^2}=1\)
có giá trị ko đổi
\(\left(-x^2+x+6\right)\sqrt{x+3}\ge0\Leftrightarrow\left(3-x\right)\left(x+2\right)\ge0\)do \(\sqrt{x+3}\ge0,x\ge-3\)
BPT \(\Leftrightarrow-2\le x\le3.\)kết hợp với điều kiện \(x\ge-3\)ta được \(-2\le x\le3.\)