Cho phương trình \(2x^2+2mx+m^2-2=0\), với m là tham số
a) Tìm hệ thức liên hệ giưa \(x_1,x_2\) ko phụ thuộc vào m
b) Tìm max và min của \(A=\frac{2x_1x_2+3}{x_1^2+x_2^2+\left(2x_1x_2+1\right)}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) Hình như đề bị sai rồi bạn.
Thông thường pt đã cho sẽ là \(\frac{2x}{x-2}-\frac{5}{x-3}=\frac{5}{x^2-5x+6}\)
Ta thấy \(x^2-5x+6=x^2-2x-3x+6=x\left(x-2\right)-3\left(x-2\right)=\left(x-2\right)\left(x-3\right)\)
Nên ĐKXĐ là \(\hept{\begin{cases}x\ne2\\x\ne3\end{cases}}\)
pt đã cho \(\Leftrightarrow\frac{2x\left(x-3\right)}{\left(x-2\right)\left(x-3\right)}-\frac{5\left(x-2\right)}{\left(x-2\right)\left(x-3\right)}=\frac{5}{\left(x-2\right)\left(x-3\right)}\)
\(\Leftrightarrow\frac{2x^2-6x-5x+10}{\left(x-2\right)\left(x-3\right)}=\frac{5}{\left(x-2\right)\left(x-3\right)}\)\(\Rightarrow2x^2-11x+5=0\)(*)
Ta có \(\Delta=\left(-11\right)^2-4.2.5=81>0\)nên pt (*) có 2 nghiệm phân biệt:
\(\orbr{\begin{cases}x_1=\frac{-\left(-11\right)+\sqrt{81}}{2.2}=5\left(nhận\right)\\x_2=\frac{-\left(-11\right)-\sqrt{81}}{2.2}=\frac{1}{2}\left(nhận\right)\end{cases}}\)
Vậy pt đã cho có tập nghiệm \(S=\left\{\frac{1}{2};5\right\}\)
2) Nhận thấy \(3x^2-27=3\left(x^2-9\right)=3\left(x-3\right)\left(x+3\right)\)nên ĐKXĐ ở đây là \(x\ne\pm3\)
pt đã cho \(\Leftrightarrow\frac{1}{3\left(x-3\right)\left(x+3\right)}+\frac{3}{4}=1+\frac{1}{x-3}\)
\(\Leftrightarrow\frac{1}{3\left(x-3\right)\left(x+3\right)}-\frac{3\left(x+3\right)}{3\left(x-3\right)\left(x+3\right)}=\frac{1}{4}\)
\(\Leftrightarrow\frac{1-3x-9}{3x^2-27}=\frac{1}{4}\)\(\Rightarrow-12x-32=3x^2-27\)\(\Leftrightarrow3x^2+12x+5=0\)(#)
Nhận thấy \(\Delta'=6^2-3.5=21>0\)
Vậy pt (#) có 2 nghiệm phân biệt \(\orbr{\begin{cases}x_1=\frac{-12+\sqrt{21}}{3}\left(nhận\right)\\x_2=\frac{-12-\sqrt{21}}{3}\left(nhận\right)\end{cases}}\)
Vậy pt đã cho có tập nghiệm \(S=\left\{\frac{-12\pm\sqrt{21}}{3}\right\}\)
\(x^2-4x=3\)\(\Leftrightarrow x^2-4x-3=0\)(*)
Ta có \(\Delta'=\left(-2\right)^2-1.\left(-3\right)=7>0\)nên pt (*) có 2 nghiệm phân biệt
\(\orbr{\begin{cases}x_1=\frac{-\left(-2\right)+\sqrt{7}}{1}=2+\sqrt{7}\\x_2=\frac{-\left(-2\right)-\sqrt{7}}{1}=2-\sqrt{7}\end{cases}}\)
\(P=\dfrac{5\sqrt{x}}{x-1}+\dfrac{3}{2\sqrt{x}+2}-\dfrac{5}{2\sqrt{x}-2}\)
\(P=\dfrac{5\sqrt{x}}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}+\dfrac{3}{2\left(\sqrt{x}+1\right)}-\dfrac{5}{2\left(\sqrt{x}-1\right)}\)
\(P=\dfrac{2.5\sqrt{x}+3\left(\sqrt{x}-1\right)-5\left(\sqrt{x}+1\right)}{2\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)
\(P=\dfrac{10\sqrt{x}+3\sqrt{x}-3-5\sqrt{x}-5}{2\left(\sqrt{x}+1\right)\left(\sqrt{x}+1\right)}\)
\(P=\dfrac{8\sqrt{x}-8}{2\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)
\(P=\dfrac{8\left(\sqrt{x}-1\right)}{2\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)
\(P=\dfrac{4}{\sqrt{x}+1}\)
=dbfuegfnwawebfpipqpwoudqwjahfejbgfjbdsjbvjbsjfbsmajdihafbjafub cdit cmm
Lời giải:
a. $\Delta'=m^2-(m^2-2)=2>0$ nên pt luôn có 2 nghiệm pb với mọi $m\in\mathbb{R}$
Áp dụng định lý Viet:
$x_1+x_2=-m$
$x_1x_2=\frac{m^2-2}{2}$
$\Rightarrow (x_1+x_2)^2=m^2=2x_1x_2+2$
$\Leftrightarrow (x_1+x_2)^2-2x_1x_2=2$
$\Leftrightarrow x_1^2+x_2^2=2$
Đây chính là hệ thức liên hệ giữa $x_1,x_2$ không phụ thuộc $m$
b.
\(A=\frac{2x_1x_2+3}{2+2x_1x_2+1}=\frac{2x_1x_2+3}{2x_1x_2+3}=1\) nên không có có min, max.