K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 9 2020

tui kc biết

A B C E D O

a, Xét tam giác ABE và tam giác ACD có :

             AB = AC ( theo bài cho )

            góc A chung

            AE = AD ( theo bài cho )

Do đó : tam giác ABE = tam giác ACD ( c.g.c )

=> góc ABE = góc ACD ( hai góc tương ứng )

b, Ta có : góc OBC = góc B - góc ABE 

               góc OCB = góc C - góc ACD 

mà góc ABE = góc ACD ( theo câu a )

và góc B = góc C ( vì AB = AC nên tam giác ABC cân )

=> góc OBC = góc OCB 

=> tam giác OBC cân tại O nên OB = OC .

Xét tam giác OBD và tam giác OCE có :

         góc BOD = góc COE ( đối đỉnh )

         OB = OC 

         góc OBD = góc OCE ( vì góc ABE = góc ACD hay góc OBD = góc OCE )

Do đó : tam giác OBD = tam giác OCE ( g.c.g )

=> OD = OE ( hai góc tương ứng )

Vậy OD = 0E và OB = OC .

Học tốt nhé

14 tháng 9 2020

                                                                Bài giải

A B C D E F

a) Xét  \(\Delta AEF\)\(\Delta CED\) có :

AE = CE ( E là trung điểm AC )

\(\widehat{ AEF}\) = \(\widehat{CED}\) ( đối đỉnh)

EF = ED ( gt )

\(\Rightarrow\)\(\Delta AEF =\Delta CED\) ( c.g.c)

\(\Rightarrow\text{ }AF=DC\)  ( 2 cạnh tương ứng ) 

b)

Xét \(\Delta AED\) và \(\Delta CEF\) có:

AE = EC (gt)

AED = CEF ( đối đỉnh)

ED = EF (gt)

Do đó, \(\Delta AED\)  =  \(\Delta CEF\) (c.g.c)

=> AD = CF (2 cạnh tương ứng)

ADE = CFE (2 góc tương ứng)

Mà ADE và CFE là 2 góc so le trong

nên CF // AD hay CF // AB hay CF//DB

Nối đoạn CD

Xét \(\Delta BDC\)\(\Delta FCD\) có:

BD = FC ( cùng = AD)

BDC = FCD (so le trong)

CD là cạnh chung

Do đó, \(\Delta BDC\)  = \(\Delta FCD\)  (c.g.c)

=> BC = FD ( 2 cạnh tương ứng )

\(DE=EF=\frac{1}{2}FD\) 

=>DE=1/2 BC ( đpcm)

Lại có : \(\Delta BDC=\Delta FCD\)( cmt)

=> BCD = FDC (2 góc tương ứng)

Mà BCD và FDC là 2 góc so le trong nên DF // BC hay DE // BC ( E thuộc DF) ( đpcm)

Hình tự vẽ, Giải : 

Kẻ tia phân giác góc A => góc A1 = góc A2. 

Tia phân giác góc A cắt BC tại M

Tự các dữ kiện suy ra tam giác ABM = tam giác ACM ( c.c.c ) 

Suy ra góc B = góc C ( tương ứng ) 

14 tháng 9 2020

A I B N M C

TA CÓ:

IM là cạnh chung

BI=MN(gt)

góc MIB=góc IMN  (AB//MN)

TAM giác IBM=Tam giác INM(c-g-c)

góc BMI=góc MIN

suy ra IM//AC