Tìm giá trị nhỏ nhất của biểu thức: A = 2006 + |3x + 2y | + \(\left(x-\frac{1}{2}\right)^2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài giải:
Chiều dài cái sân hình chữ nhật đó là:
\(1000:20=50\left(m\right)\)
Chu vi cái sân hình chữ nhật đó là:
\(\left(20+50\right).2=140\left(m\right)\)
Đáp số: \(140m\)
Chiều dài của cái sân đó là:
1000 : 20 = 50 (m)
Chu vi của cái sân đó là:
(50 + 20) x 2 = 140 (m)
Đ/s: 140 m
Chạy quãng đường 332,5km hết số lít là:
332,5:(157,5:4,5)=9,5 (lít)
Đáp số: 9,5 lít
Giải:
1 lít xăng chạy được là:
157,5 : 4,5 = 35 (km)
332,5 ki-lô-mét hết số lít xăng là:
332,5 : 35 = 9,5 (lít)
Đáp số: 9,5 lít
Em kiểm tra lại đề bài nhé \(\frac{2}{x-y}\)hay \(\frac{2}{x-2}\)
-> a : 9 = 3
= 3 × 9
= 27
-> a : 27 = 12
= 12 × 27
= 324
-> a : 41 = 27
= 27 × 41
= 1107
Mình cũng không biết mình đúng hem nha!!!
Mình biết gì thì chỉ đó à! Sẽ có bạn khác chỉ cho bạn đáp án đúng nhất!!
CHÚC BẠN HỌC TỐT!!!
a chia 9 dư 3 , hay (a+6) ⋮ 9 hay (a+6+90) ⋮ 9 (Tính chất chia hết của 1 tổng) hay (a+96) ⋮ 9.
a chia 27 dư 12 , hay (a+15) ⋮ 27 hay (a+15+81) ⋮ 27 (Tính chất chia hết của 1 tổng) hay (a+96) ⋮ 27.
a chia 41 dư 27 , hay (a+14) ⋮ 41 hay (a+14+82) ⋮ 41 (Tính chất chia hết của 1 tổng) hay (a+96) ⋮ 41.
Suy ra : (a+96) ⋮ 9;27 và 41 hay (a+96) ϵ BC(9,27,41).
9 = 32 ; 27 =33 ; 41 = 41.
BCNN(9,27,41) = 33.41=1107.
BC(9,27,41) = { 0;1107;2214;... }
Vì a nhỏ nhất nên a+96 cũng nhỏ nhất nên a + 96 = 1107. (a+96=0 thì a=0-96 -> vô lý -> loại)
a + 96 = 1107
a = 1107 - 96
a = 1101.
Vạy a= 1101.
Ta có: \(x^3+y^3+\frac{1}{3^3}-3xy.\frac{1}{3}=0\)
<=> \(\left(x+y+\frac{1}{3}\right)\left(x^2+y^2+\frac{1}{9}-xy-\frac{1}{3}x-\frac{1}{3}y\right)=0\)
<=> \(\orbr{\begin{cases}x+y+\frac{1}{3}=0\left(1\right)\\x^2+y^2+\frac{1}{9}-xy-\frac{1}{3}x-\frac{1}{3}y=0\left(2\right)\end{cases}}\)
(1) <=> \(x+y=-\frac{1}{3}\)loại vì x > 0 ; y >0
( 2) <=> \(\left(x-\frac{1}{3}\right)^2+\left(y-\frac{1}{3}\right)^2+\left(x-y\right)^2=0\)
vì \(\left(x-\frac{1}{3}\right)^2\ge0;\left(y-\frac{1}{3}\right)^2\ge0;\left(x-y\right)^2\ge0\)với mọi x, y
nên \(\left(x-\frac{1}{3}\right)^2+\left(y-\frac{1}{3}\right)^2+\left(x-y\right)^2\ge0\)với mọi x, y
Do đó: \(\left(x-\frac{1}{3}\right)^2+\left(y-\frac{1}{3}\right)^2+\left(x-y\right)^2=0\)
<=> \(x=y=\frac{1}{3}\)
Làm tiếp:
Với \(x=y=\frac{1}{3}\)=> \(x+y=\frac{2}{3}\) thế vào P
ta có: \(P=\left(\frac{2}{3}+\frac{1}{3}\right)^3-\frac{3}{2}.\frac{2}{3}+2016=2016\)
Ta có:
\(\left(x-\frac{1}{2}\right)^2\ge0;\left|3x+2y\right|\ge0\Rightarrow\left(x-\frac{1}{2}\right)^2+\left|3x+2y\right|\ge0\)
\(\Rightarrow\left(x-\frac{1}{2}\right)^2+\left|3x+2y\right|+2006\ge2006\)
Dấu "=" xảy ra tại \(\hept{\begin{cases}x-\frac{1}{2}=0\\3x=-2y\end{cases}}\Rightarrow x=\frac{1}{2};y=-\frac{3}{4}\)
Vậy \(A_{min}=2006\Leftrightarrow x=\frac{1}{2};y=-\frac{3}{4}\)