CÂU 3: PHÂN TÍCH ĐA THỨC THÀNH NHÂN TỬ:
A) 3x^3-6x^2+3x
B) 16x^2y-4xy^2-4x^3
C) x^2+4x+4-9y^2
D) x^2-5x-6
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
thực ra đề gốc hỏi x+y có phải là số chính phương hay không, x,y,z thuộc N*, có bạn làm thế này:
\(\frac{1}{x}+\frac{1}{y}=\frac{1}{z}\Leftrightarrow z.\left(x+y\right)=xy\)
Giả sử x+y là số chính phương. Đặt x+y=k2
mà \(z.\left(x+y\right)=xy\)
\(\Leftrightarrow zk^2=xy\)
Vì x,y là số nguyên tố => 1 trong 2 số chia hết cho k2 vì x,y,z thuộc N*
Giả sử x=n.k2 (n thuộc N*)
mà \(zk^2=xy\)
\(\Leftrightarrow zk^2=n.k^2.y\Leftrightarrow z=n.y\Leftrightarrow\frac{z}{y}=n\), vì x,y là 2 số nguyên tố cùng nhau => n không thuộc N*(vô lí)
vậy x+y ko phải số chính phương
Bạn đó làm đã đúng chưa, nếu sai hãy sửa lại :v
Thử, đúng hay sai thì tùy, mình mới học sơ sơ dạng này thôi, nếu sai xin đừng bốc phốt...:v
Theo đề bài\(z\left(x+y\right)=xy\Leftrightarrow x+y=\frac{xy}{z}\) và (x;y;z) = 1
Giả sử x + y là số chính phương khi đó \(\frac{xy}{z}=k^2\left(k\inℕ^∗\right)\Leftrightarrow xy=k^2.z\)
Suy ra xy chia hết cho z. Mà x, y, z nguyên tố cùng nhau nên x và y đều không chia hết cho z.
\(\Rightarrow xy=z\). Khi đó \(\left(x;y;z\right)=1\Leftrightarrow\left(x;y\right)=\left(y;z\right)=1\Leftrightarrow\left(x;y\right)=\left(y;xy\right)=1\) (vô lí vì
\(\left(y;xy\right)=y\))
Vậy ko tồn tại x, y,z..
:]] đề sai rồi:
\(a^3+3a=b^3+3b\)
\(\Leftrightarrow\left(a^3-b^3\right)+\left(3a-3b\right)=0\)
\(\Leftrightarrow\left(a-b\right).\left(a^2+ab+b^2+3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}a-b=0\\\left(a^2+ab+\frac{b^2}{4}\right)+\frac{3}{4}b^2+3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}a=b\\\left(a+\frac{b}{2}\right)^2+\frac{3}{4}b^2=-3\left(\text{loại vì }VP\ge0,\text{VT}< 0\right)\end{cases}}}\)
Nếu a+b=-3 (như trên), mà a=b => a=b=-3/2. Thao -3/2 vào a3+3a khác 2 :)))
Gọi nghiệm của phương trình 6x2+20x+15=0 là t1và t2 .
Nếu ta giả sử rằng a=t1 thì b=\(\frac{1}{t_2}\)
Lúc này biểu thức đã cho trở thành :
\(\frac{\frac{1}{t^3_2}}{\frac{t_1}{t^2_2}-9\left(\frac{t_1}{t_2}+1\right)^3}\)\(=\frac{1}{t_1.t_2-9\left(t_1+t_2\right)^3}\)
Bây giờ chỉ cần thay các giá trị t1+t2 và t1.t2 từ phương trình bậc 2 vào biểu thức trên để có đáp án.
P/s : nếu chưa học pt bậc 2 thì k làm được đâu
\(\frac{ay-bx}{c}=\frac{cx-az}{b}=\frac{bz-cy}{a}\)
\(\Rightarrow\frac{acy-bcx}{c^2}=\frac{bcx-abz}{b^2}=\frac{abz-acy}{a^2}=\frac{0}{a^2+b^2+c^2}=0\)
\(\Rightarrow\hept{\begin{cases}ay-bx=0\\cx-az=0\\bz-cy=0\end{cases}}\)
\(\Rightarrow\left(ay-bx\right)^2+\left(cx-az\right)^2+\left(bz-ay\right)^2=0\)
\(\Rightarrow a^2y^2-2axby+b^2x^2+a^2z^2-2axcz+c^2x^2+b^2z^2-2bycz\)
\(+c^2y^2=0\)
\(\Rightarrow a^2x^2+a^2y^2+a^2z^2+b^2x^2+b^2y^2+b^2z^2+c^2x^2+c^2y^2+c^2z^2\)
\(=a^2x^2+b^2y^2+c^2z^2+2axby+2bycz+2axcz\)
\(\Rightarrow\left(x^2+y^2+z^2\right)\left(a^2+b^2+c^2\right)=\left(ax+by+cz\right)^2\)
#)Giải :
Ta có : \(\hept{\begin{cases}ax+by=c\\bx+cy=a\\cx+ay=b\end{cases}\Rightarrow ax+by+bx+cy+cx+ay=c+a+b}\)
\(\Rightarrow x\left(a+b+c\right)+y\left(a+c+b\right)=a+b+c\)
\(\Rightarrow\left(x+y-1\right)\left(a+b+c\right)=0\)
\(\Rightarrow a+b+c=0\Rightarrow a+b=-c\)
\(\Rightarrow a^3+b^3+c^3=a^3+3ab\left(a+b\right)+b^3-3ab\left(a+b\right)+c^3\)
\(=\left(a+b\right)^3-3ab\left(a+b\right)+c^3\)
\(=\left(-c\right)^3-3ab\left(-c\right)+c^3=3abc\)
\(\Rightarrowđpcm\)
Ta có \(\hept{\begin{cases}x+y=a+b\\x^3+y^3=a^3+b^3\end{cases}\left(1\right)}\)
\(\left(1\right)\Leftrightarrow\hept{\begin{cases}x+y=a+b\\\left(x+y\right)^3-3xy\left(x+y\right)=\left(a+b\right)^3-3ab\left(a+b\right)\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x+y=a+b\\xy\left(a+b\right)=ab\left(a+b\right)\end{cases}\left(2\right)}\)
Nếu \(a+b\ne0\)thì \(\left(2\right)\Leftrightarrow\hept{\begin{cases}x+y=a+b\\xy=ab\end{cases}}\)
=> x,y là 2 nghiệm của phương trình \(X^2-\left(a+b\right)X+ab=0\)
Giải ra ta có \(\hept{\begin{cases}x=b\\y=a\end{cases};\hept{\begin{cases}x=a\\y=b\end{cases}}}\)\(\Rightarrow x^{2011}+y^{2011}=a^{2011}+b^{2011}\)(3)
Nếu \(a+b=0\Rightarrow a=-b\)
Ta có hệ phương trình \(\hept{\begin{cases}x+y=0\\x^3+y^3=0\end{cases}\Rightarrow x=-y}\)
\(\Rightarrow\hept{\begin{cases}x^{2011}+y^{2011}=0\\a^{2011}+y^{2011}=0\end{cases}}\)\(\Rightarrow x^{2011}+y^{2011}=a^{2011}+b^{2011}\)(4)
Từ (3) và (4) => đpcm
\(\frac{2a^2-2ac+c^2}{2b^2-2bc+c^2}=\frac{a-c}{b-c}\)
\(\Leftrightarrow2a^2b-2a^2c+ac^2-bc^2-2ab^2+2b^2c=0\)
\(\Leftrightarrow2a\left(ab-ac+\frac{c^2}{2}\right)-bc^2-2ab^2+2bc^2=b\left(2ac-c^2-2ab+2bc\right)=0\)(đúng)
=> đpcm
Từ \(c^2+2\left(ab-bc-ac\right)=0.\)
\(\Rightarrow c^2+2ab-2bc-2ac=0\)
\(\Rightarrow\frac{c^2}{2}+ab-bc-ac=0\)
\(\Rightarrow bc=\frac{c^2}{2}+ab-ac\)
Có : \(2a\left(ab-ac+\frac{c^2}{2}\right)-bc^2-2ab^2+2bc^2\)
\(=2abc-bc^2-2ab^2+2bc^2\)
\(=-b\left(-2ac+c^2+2ab-2bc\right)\)
\(=-b\left[c^2+2\left(ab-bc-ac\right)\right]=-b.0=0\)\(\left(đpcm\right)\)
\(a,3x^3-6x^2+3x\)
\(=3x\left(x^2-2x+1\right)\)
\(=3x\left(x-1\right)^2\)
\(b,16x^2y-4xy^2-4x^3\)
\(=-4x\left(x^2-4xy+4y^2-3y^2\right)\)
\(=-4x\left(x-2y+y\sqrt{3}\right)\left(x-2y-y\sqrt{3}\right)\)