tìm các cặp số nguyên a,b biết
ab+b=a+5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{x}{5}=\dfrac{y}{3}=\dfrac{z}{2}\) và \(x-3y=20\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\dfrac{x}{5}=\dfrac{3y}{9}=\dfrac{z}{2}=\dfrac{x-3y}{5-9}=\dfrac{20}{-4}=-5\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{5}=-5< =>x=-25\\\dfrac{y}{3}=-5< =>y=-15\\\dfrac{z}{2}=-5< =>z=-10\end{matrix}\right.\)
Vậy ....
a)
\(\dfrac{x}{5}=\dfrac{y}{2}=\dfrac{3x-2y}{3.5-2.2}=\dfrac{-55}{11}=-5\)
=> \(\left\{{}\begin{matrix}x=-5.5=-25\\y=-5.2=-10\end{matrix}\right.\)
b)
\(\dfrac{x}{3}=\dfrac{y}{2}=\dfrac{2x+5y}{2.3+5.2}=\dfrac{48}{16}=3\)
=> \(\left\{{}\begin{matrix}x=3.3=9\\y=3.2=6\end{matrix}\right.\)
c)
Có: \(\dfrac{x}{y}=-\dfrac{5}{2}\Leftrightarrow-\dfrac{x}{5}=\dfrac{y}{2}=\dfrac{x+y}{-5+2}=\dfrac{30}{-3}=-10\)
=> \(\left\{{}\begin{matrix}x=-10.-5=50\\y=-10.2=-20\end{matrix}\right.\)
d)
Có: \(\dfrac{x}{y}=\dfrac{4}{3}\Leftrightarrow\dfrac{x}{4}=\dfrac{y}{3}=\dfrac{2x+3y}{2.4+3.3}=\dfrac{34}{17}=2\)
=> \(\left\{{}\begin{matrix}x=2.4=8\\y=2.3=6\end{matrix}\right.\)
Bài 1:
Tam giác MNP có: \(\widehat{M}=40^o;\widehat{N}=100^o\)
Tổng số đo 3 góc của 1 tam giác là 180o, ta được:
\(\widehat{M}+\widehat{N}+\widehat{P}=180^o\\ \Leftrightarrow40^o+100^o+\widehat{P}=180^o\\ \Leftrightarrow140^o+\widehat{P}=180^o\\ \Leftrightarrow\widehat{P}=180^o-140^o=40^o\)
Vì: \(\widehat{M}=\widehat{P}=40^o\) => Tam giác MNP là tam giác cân tại N (ĐPCM)
\(\left(\dfrac{1}{2}\right)^x+\left(\dfrac{1}{2}\right)^{x+2}=\dfrac{1}{128}\\ \left(\dfrac{1}{2}\right)^x.\left[1+\left(\dfrac{1}{2}\right)^2\right]=\dfrac{1}{128}\\ \left(\dfrac{1}{2}\right)^x.\dfrac{5}{4}=\dfrac{1}{128}\\ \left(\dfrac{1}{2}\right)^x=\dfrac{1}{128}:\dfrac{5}{4}=\dfrac{1}{128}.\dfrac{4}{5}=\dfrac{4}{640}=\dfrac{1}{160}\)
Thầy thấy số lẻ quá....
`#3107.101107`
\(\left(\dfrac{1}{2}\right)^x+\left(\dfrac{1}{2}\right)^{x+2}=\dfrac{1}{128}\)
\(\Rightarrow\left(\dfrac{1}{2}\right)^x\cdot\left[1+\left(\dfrac{1}{2}\right)^2\right]=\dfrac{1}{128}\)
\(\Rightarrow\left(\dfrac{1}{2}\right)^x\cdot\left(1+\dfrac{1}{4}\right)=\dfrac{1}{128}\)
\(\Rightarrow\left(\dfrac{1}{2}\right)^x\cdot\dfrac{5}{4}=\dfrac{1}{128}\)
\(\Rightarrow\left(\dfrac{1}{2}\right)^x=\dfrac{1}{128}\div\dfrac{5}{4}\)
\(\Rightarrow\left(\dfrac{1}{2}\right)^x=\dfrac{1}{160}\)
Bạn xem lại đề.
Ta có: \(\left\{{}\begin{matrix}\left|0,25x-1\right|\ge0\forall x\\\left|3-2y\right|\ge0\forall y\end{matrix}\right.\)
\(\Rightarrow\left|0,25x-1\right|+\left|3-2y\right|\ge0\forall x,y\)
Mà: \(\left|0,25x-1\right|+\left|3-2y\right|=0\)
nên: \(\left\{{}\begin{matrix}0,25x-1=0\\3-2y=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}0,25x=1\\2y=3\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=4\\y=\dfrac{3}{2}\end{matrix}\right.\)
Vậy: \(x=4;y=\dfrac{3}{2}\).
ab + b = a + 5
< = > b ( a + 1 ) - ( a + 1 ) = 4
< = > ( a + 1 ) ( b - 1 ) = 4
Do a, b nguyên nên a + 1 , b - 1 nguyên
= > a + 1 , b - 1 thuộc Ư(4) \(\in\left\{\pm1;\pm2;\pm4\right\}\)
và ( a + 1 ) ( b - 1 ) = 4
Xét bảng sau :
Vậy ....